共享单车入栏检测算法研究与实现
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

“空间导航与定位NQI技术集成及应用示范”项目(2017YFF0212000)资助


Research and implementation on algorithm for entry fence detection of shared bicycles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    正确引导共享单车用户规范停车,是政府管理的重要举措。为此提出了利用聚类的原理、基于K均值的共享单车入栏检测算法。首先模拟产生服从高斯分布的随机单车定位数据;其次对定位数据进行聚类分组,不断迭代向均值移动确定每簇的中心点;最后将数据量最多的簇中心点作为单车的停放位置,对其进行入栏检测分析。用实际测得的单车定位数据验证入栏检测准确率,结果表明,在符合政府管理要求的条件下可准确检测单车是否入栏,正确率高达80%~100%,具有较好的实用价值。

    Abstract:

    In order to standardize parking, city managers mark parking areas with rectangular solid white lines on the pavement to remind riders to park their bicycles within the fence. A new method uses the K-means clustering principle for fence of shared bicycles is proposed. First, the location data of Gauss distribution are simulated. Second, to get multiple clusters, the data of each location are clustered, and then by means of continuous iteration, the final center of each cluster is determined. Finally, the data of the largest cluster of central points for entry fence detection are analyzed. The accurate rate of entry fence detection is verified by the actual measurement of location data of shared bicycles. The results show that the algorithm can accurately detect whether the shared bicycles enter the fence under the prescribed conditions, accuracy is as high as 80%-100%, and has high practical value.

    参考文献
    相似文献
    引证文献
引用本文

朱江淼,张菁,黄艳,金森林,高春柳.共享单车入栏检测算法研究与实现[J].电子测量技术,2019,42(8):98-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-16
  • 出版日期:
文章二维码