基于GA-BP神经网络在手写数字识别中的应用研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:


Application of BP neural network optimized by genetic algorithm in handwritten numeral recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手写数字识别在当今社会有着重要的应用价值,在金融、社交、教育、通信等领域有着广泛的应用前景。手写数字识别是光学字符识别技术的一个分支,目前大多采用BP神经网络进行识别,但BP神经网络存在局部极小值、学习速度慢、结构选取上无确定准则三方面缺陷,影响其识别效果。通过遗传算法寻优BP神经网络最佳的初始阈值、初始权值、结构来克服其缺陷。通过MATLAB仿真,结果表明,用遗传算法优化后的BP神经网络具有辨识正确率更高、泛化能力更强、收敛速度更快、实用性更强的优点,达到了预期的目的,为手写数字识别提供了良好的理论研究价值。

    Abstract:

    Handwritten digit recognition has important application value in today′s society, and has broad application prospects in finance, social networking, education, communication and other fields. Handwritten digit recognition is a branch of optical character recognition technology. The common methods are identified by BP neural network, but there are three defects in BP neural network, such as local minimum, slow learning speed, and structure selection, and the optimization algorithm is used to optimize its structure. In this paper, genetic algorithm is used to optimize the initial threshold, initial weight and structure of BP neural network to overcome its shortcomings. The study of handwritten digital recognition as an object is carried out. The results of Matlab simulation show that the BP neural network optimized by genetic algorithm has the advantages of higher recognition accuracy, stronger generalization ability, faster convergence speed and stronger practicability, which provides a good theoretical basis for handwritten digital recognition.

    参考文献
    相似文献
    引证文献
引用本文

程换新,刘军亮.基于GA-BP神经网络在手写数字识别中的应用研究[J].电子测量技术,2019,42(9):89-92

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-23
  • 出版日期:
文章二维码