改进深度置信网络对TE过程故障诊断研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP277;TN98

基金项目:


Improved DBN for TE process fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现对TE过程的故障诊断,改进了深度置信网络(DBN)的故障诊断方法。传统DBN在训练过程有冗余特性,减弱网络的特征提取能力,改进DBN在无监督学习阶段的似然函数中加入惩罚正则项,通过稀疏约束得到DBN训练集的稀疏分布,再用Laplace函数的分布引导DBN节点的稀疏状态,用Laplace函数中的位置参数控制稀疏的力度,使无标签的数据特征更加直观的表示出来,最后将改进DBN和传统DBN、BP神经网络的仿真实验结果进行对比。实验结果,证明改进的DBN在故障诊断方面优于传统DBN和BP神经网络,达到了最好的诊断准确度,具有很高的理论研究价值。

    Abstract:

    In order to realize the fault diagnosis of the tennessee eastman (TE) process, the fault diagnosis method of the deep belief network (DBN) is improved. The traditional DBN will generate redundant features in the training process, weaken the feature extraction ability of the network, improve the DBN to add the penalty regular term in the likelihood function of the unsupervised learning phase, obtain the sparse distribution of the DBN training set through the sparse constraint, and then use the Laplace function. The distribution guides the sparse state of the DBN node, and uses the positional parameters in the Laplace function to control the sparse strength, so that the unlabeled data features can be more intuitively represented. Finally, the improved DBN and traditional DBN and BP neural network simulation results are compared. The experimental results show that the improved DBN is superior to the traditional DBN and BP neural network in fault diagnosis, achieving the best diagnostic accuracy and high Theoretical research value.

    参考文献
    相似文献
    引证文献
引用本文

程换新,王建庆.改进深度置信网络对TE过程故障诊断研究[J].电子测量技术,2019,42(9):117-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-23
  • 出版日期:
文章二维码