干扰条件下基于改进SOM故障诊断研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:


Research on fault diagnosis based on improved SOM under interference conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机载电子设备在噪声干扰条件下故障诊断效果不佳的问题,基于自组织特征映射网络(SOM),提出了改进的SOM的网络算法,该算法在标准SOM网络的基础上引入了滤波算法进行初级降噪处理,然后进行阈值学习,重新定义了邻域函数和学习率,最后以故障评价指标为基准进行故障的隔离定位。在高斯白噪声条件下以某型飞机前端接收机的故障数据为例建立诊断模型。通过聚类和网络训练等仿真测试实验得到了故障模式的分类和隔离。同时通过与其他方法的性能比较验证了SOM神经网络在高斯白噪声干扰条件下故障诊断中的有效性、准确性和鲁棒性。

    Abstract:

    Aiming at the problem of poor fault diagnosis of airborne electronic equipment under noise interference conditions, an improved self-organizing feature mapping (SOM) network algorithm is proposed based on SOM network. Based on the standard SOM network, the algorithm introduces the filtering algorithm for primary noise reduction, then performs threshold learning, redefines the neighborhood function and learning rate, and finally uses the fault evaluation index as the benchmark to isolate the fault. Under the condition of Gaussian white noise, the fault data of the front-end receiver of a certain aircraft is taken as an example to establish a diagnostic model. The classification and isolation of fault modes are obtained through simulation tests such as clustering and network training. At the same time, the effectiveness, accuracy and robustness of SOM neural network in fault diagnosis under Gaussian white noise interference conditions are verified by comparison with other methods.

    参考文献
    相似文献
    引证文献
引用本文

孙扩,刘兴.干扰条件下基于改进SOM故障诊断研究[J].电子测量技术,2019,42(9):131-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-23
  • 出版日期:
文章二维码