杨勋勇,杨发顺,胡锐,陈潇,马奎.高压大功率芯片封装的散热研究与仿真分析[J].电子测量技术,2019,42(10):43-47
高压大功率芯片封装的散热研究与仿真分析
Thermal research and simulation analysis of high voltage and high power chip package
  
DOI:
中文关键词:  封装散热  高压大功率芯片  散热效率  Flo THREM  TO-3封装  热导率
英文关键词:package heat dissipation  high voltage and high power chip  heat dissipation efficiency  Flo THREM  TO-3 package  thermal conductivity
基金项目:国家自然科学基金项目(61464002、61664004)、贵州省重大科技专项(黔科合重大专项字[2015]6006)、贵州省科技计划项目(黔科合平台人才[2017]5788号)、贵州省功率元器件可靠性重点实验室开放基金(KFJJ201504)项目资助
作者单位
杨勋勇 贵州大学大数据与信息工程学院 贵阳 550025 
杨发顺 贵州大学大数据与信息工程学院 贵阳 550025 
胡锐 贵州振华风光半导体有限公司 贵阳 550018 
陈潇 贵州振华风光半导体有限公司 贵阳 550018 
马奎 贵州大学大数据与信息工程学院 贵阳 550025 
AuthorInstitution
Yang Xunyong College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China 
Yang Fashun College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China 
Hu Rui Guizhou Zhenhua Feng Guang Semiconductor Co. Ltd, Guiyang 550018, China 
Chen Xiao Guizhou Zhenhua Feng Guang Semiconductor Co. Ltd, Guiyang 550018, China 
Ma Kui College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China 
摘要点击次数: 665
全文下载次数: 594
中文摘要:
      以工作电压为70V、输出电流为9A的高压大功率芯片TO-3封装结构为例,首先基于热分析软件Flo THERM建立三维封装模型,并对该封装模型的热特性进行了仿真分析。其次,针对不同基板材料、不同封装外壳材料等情况开展对比分析研究。最后研究封装体的温度随粘结层厚度、功率以及基板厚度的变化,得到一个散热较优的封装方案。仿真验证结果表明,基板材料和封装外壳的热导率越高,其散热效果越好,随着粘结层厚度以及芯片功率的增加,芯片的温度逐渐升高,随着基板厚度的增加,芯片温度降低,当基板材料为铜、封装外壳为BeO,粘结层为AuSn20时,散热效果最佳。
英文摘要:
      Take the high-voltage high-power chip TO-3 package structure with operating voltage of 70V and output current of 9A as an example, the three-dimensional package model is first established based on the thermal analysis software Flo THERM, and the thermal characteristics of the package model is simulated and analyzed. Secondly, comparative analysis is carried out for the presence/absence of substrates, different substrate materials, and different package materials. Finally, the temperature of the package is studied according to the thickness of the bonding layer, the power and the thickness of the substrate, and a package with optimized heat dissipation is obtained. The simulation results show that The higher the thermal conductivity of the substrate material and the package casing, the better the heat dissipation effect. As the thickness of the bonding layer and the power of the chip increase, the temperature of the chip gradually increases. As the thickness of the substrate increases, the temperature of the chip decreases. The heat dissipation effect is optimal when the substrate material is copper, the package casing is BeO, and the bonding layer is AuSn20.
查看全文  查看/发表评论  下载PDF阅读器