基于数据增强的太阳能电池片缺陷检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金(41601394)、湖北工业大学博士启动基金(BSQD2016010)资助项目


Defect detection of solar cell based on data augmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对太阳能电池片缺陷数据量匮乏造成的网络过拟合和模型性能不达标的问题,提出基于深度卷积对抗生成网络和图像随机拼接的真假数据融合算法,将训练数据量提升了800倍;同时对网络模型进行轻量化优化,减少模型训练参数。实验结果表明,经过真假数据融合扩充数据集后训练的模型测试精度相比原始训练集和传统数据增强算法分别提升了近30%和17%;轻量化处理后的模型参数减少为之前的1/2,对每张图片的测试时间由57 ms缩短到22 ms。研究证明,真假数据融合算法能够有效的缓解训练数据不足造成网络过拟合问题;轻量化优化模型在保证精度的同时,压缩模型大小,加快测试速度。

    Abstract:

    Aiming at the problem of network overfitting and model performance under standard caused by the lack of defective data amount of solar cells, In this paper, a true and false data fusion algorithm based on deep convolution confrontation generation network and random image Mosaic is proposed, which improves the training data volume by 800 times. At the same time, the network model is optimized with light weight to reduce model training parameters. The experimental results show that the test accuracy of the trained model after the data fusion and expansion of the data set is nearly 30% and 17% higher than that of the original training set and the traditional data enhancement algorithm. After the lightweight treatment, the model parameters were reduced to about half of the previous ones, and the test time for each image was shortened from 57 ms to 22 ms. The research shows that the fusion algorithm can effectively alleviate the problem of network overfitting caused by insufficient training data. The lightweight optimization model not only ensures the accuracy, but also compresses the size of the model to speed up the test.

    参考文献
    相似文献
    引证文献
引用本文

王云艳,周志刚,罗帅.基于数据增强的太阳能电池片缺陷检测[J].电子测量技术,2021,44(1):26-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-28
  • 出版日期:
文章二维码