磷酸铁锂动力电池循环寿命预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM9113

基金项目:

十三五预研基金项目(302060503)资助


Method for predicting cycle life of lithium iron phosphate power battery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对粒子滤波循环寿命预测算法对磷酸铁锂动力电池长期预测效果较差问题, 通过神经网络对电池历史数据进行学习,将训练学习值作为观测值代入粒子滤波算法中, 修正粒子状态值; 针对磷酸铁锂电池动态方程中寿命没有直接与观测值建立联系的问题, 推导了关于电池寿命与容量观测值的后验概率关系, 得到蒙特卡洛方法下的后验概率密度关系, 给出了电池寿命预测不确定性表达。实验结果表明以神经网络训练值, 作为改进粒子滤波动态方程算法的观测值, 方法有效, 降低了预测误差。

    Abstract:

    Aiming at the problem that the particle filter cycle life prediction algorithm has a poor longterm prediction effect on lithium iron phosphate battery, neural network is used to learn the historical data of the battery, and the training learning value is substituted as the observation value into the particle filter algorithm to modify the particle state value; for phosphoric acid In the dynamic equation of the lithium iron battery, there is no problem that the life is directly related to the observation value. The posterior probability relationship between the battery life and the capacity observation value is derived. The posterior probability density relationship under the Monte Carlo method is obtained, and the battery life is given. Forecast uncertainty expression. The experimental results show that the neural network training value is used as the observation value of the improved particle filter dynamic equation algorithm, and the method is effective and reduces the prediction error.

    参考文献
    相似文献
    引证文献
引用本文

张宁,汤建林,彭发豫,周坤烨.磷酸铁锂动力电池循环寿命预测方法[J].电子测量技术,2021,44(1):33-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-28
  • 出版日期:
文章二维码