基于MEMD和TK能量算子的肌电信号手势识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN9117; R741044

基金项目:

国家自然科学基金(61873259)、辽宁省自然科学基金计划(2019ZD0066)资助项目


Surface EMG signal hand motion recognition based on MEMD and TK energy operators
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高肌电信号手势识别的准确率,提出基于时频域分析的肌电信号特征提取方法。该方法利用无线肌电信号采集装置获得肌电信号,采用基于多元经验模态分解(multivariate empirical mode decomposition,MEMD)和TK(TeagerKaiser)能量算子的肌电信号特征提取方法,利用多维尺度分析(multidimensional scaling,MDS)对多通道特征降维,采用线性判别分类器(linear discriminant analysis,LDA)对手势特征分类识别。将该算法应用于UCI数据库,手势识别准确率达9896%, 应用于自主采集数据库准确率达9937%,同时F1 score 具有明显提升。实验结果表明,与典型方法相比,所提出的肌电信号特征提取方法对手势识别的准确率更高。

    Abstract:

    To enhance the accuracy of gesture recognition using electromyogram(EMG) signals, we present an EMG signal feature extraction method based on timefrequence domain analysis. Firstly, a wireless EMG signal acquisition device is designed. Secondly, a gesture recognition method based on multivariate empirical mode decomposition (MEMD) and TeagerKaiser (TK) energy operator is proposed. Multidimensional scaling (MDS) method is used to reduce the dimensionality of multichannel features. then, linear discriminative classifier (LDA) is used to classify and recognize gesture features. The accuracy of this algorithm for UCI database can reach 9896%. The recognition accuracy for selfcollected database can reach 9937%. Meanwhile, F1 score also enhances significantly. The experiments verify that the method we proposed can reach a higher accuracy recognition results than other typical methods.

    参考文献
    相似文献
    引证文献
引用本文

裴晓敏,宋佳强,曹江涛,刘洪海.基于MEMD和TK能量算子的肌电信号手势识别[J].电子测量技术,2021,44(1):82-87

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-28
  • 出版日期:
文章二维码