基于光场的联合稀疏分布式压缩感知
DOI:
CSTR:
作者:
作者单位:

上海大学通信与信息工程学院上海200072

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:


Jointly sparse distributed compressed sensing based on light field
Author:
Affiliation:

School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信号的稀疏分解是压缩感知理论的关键问题,冗余字典相较于传统的正交基矩阵,可提供信号的更稀疏表示。首先根据光场相机特征光场图像具有图像内和图像间相关性,提出光场中的联合稀疏模型,然后使用基于图像特征训练的冗余字典稀疏表示光场信号,最后通过同时分段正交匹配追踪算法(SStOMP)重建稀疏信号, SStOMP重建速度较快,可同时重建多个信号。最后通过实验验证了算法的准确性和可靠性。

    Abstract:

    Signal sparse decomposition is one of critical issues in compressed sensing. Redundant dictionary provides much more sparse decomposition than using conventional orthonormal basis function. In this paper, we propose jointly sparse model of light field based on the features of light camera arraythe images with intersignal and intrasignal correlation, and then sparse represent the signals using different linear combinations of redundant dictionary trained from original signals, and next reconstruct the sparse signals with Simultaneously stagewise Orthogonal Matching Persuit, which runs much faster than other greedy algorithms and reconstructs images simultaneously. Finally, we give several examples showing the methods are rapid and reliable in light field images.

    参考文献
    相似文献
    引证文献
引用本文

周颖,尹艳鹏,雷蕊,张之江.基于光场的联合稀疏分布式压缩感知[J].电子测量技术,2015,38(6):108-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-05-27
  • 出版日期:
文章二维码