基于异构描述子的新型高斯混合模型图像自动标注方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家社会科学基金(No.13BTQ050)、教育部人文社会科学研究规划基金项目(11YJAZH04)


Automatic image annotation method based on novel Gauss mixture model with heterogeneous descriptors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    过去几十年以来,各种图像标注算法相继提出。这些方法要么需要很大的计算量,要么标注效果不理想。论文提出了一种基于异构描述子的新型高斯混合模型图像语义自动标注方法。本文的高斯混合模型是采用异构空间来构建的,不同于其他的高斯混合模型。对于每个标注词,在多个特征空间下分别用高斯模型来描述,形成对应子空间的“标注词分描述子”。由于各个分描述子描述不同标注词的能力有很大差别,因此通过机器学习的方法来融合这些分描述子,形成更加有效的“标注词描述子”,从而提高标注的准确率。论文提出的“标注词描述子”可以有效地建立图像高层语义概念与底层视觉特征之间的对应关系,准确地描述标注词的语义内容,从而提高图像的标注性能。通过在COREL数据集上的测试表明了方法的有效性。

    Abstract:

    Over the past few decades, a variety of image annotation algorithms have been proposed. These methods either require a large amount of computation, or effect of labeling is not satisfactory. In this paper, an automatic image semantic annotation method based on novel Gauss mixture model with heterogeneous descriptors is proposed. The Gauss mixture model is built by the heterogeneous space,which is different from the others’. Specifically, each annotation word was described by the Gauss model at a plurality of feature space respectively, and formed “annotation word subdescriptor”corresponding to the subspace. Because the ability of each subdescriptor describing the different words is different, the machine learning method is used to integrate these subdescriptors to form a more effective “annotation word descriptor” for improving the accuracy of annotation. The proposed “annotation word descriptor” can effectively establish the relations between the image semantic concepts and visual features, and accurately describe the semantic content annotation, thereby improve the performance of image annotation. The experimental results confirm that the proposed method is effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

陈利琴,金聪.基于异构描述子的新型高斯混合模型图像自动标注方法[J].电子测量技术,2015,38(11):60-65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-03-01
  • 出版日期:
文章二维码