结合空间信息的PTSVM的遥感图像变化检测
DOI:
CSTR:
作者:
作者单位:

河海大学计算机与信息学院南京210096

作者简介:

通讯作者:

中图分类号:

TN79

基金项目:


PTSVM combined with spatial information for remote sensing image change detection
Author:
Affiliation:

School of Computer and Information, Hohai University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于半监督支持向量机算法的遥感图像变化检测中,PTSVM算法采用成对标注的法则对无标签样本进行标注,即一次只标注一对无标签样本,取得了很好的检测结果,一定程度上提高了检测精度。但是PTSVM算法只利用了样本的光谱信息,而样本的特征信息不仅包括光谱信息,还有空间信息,空间信息作为样本的基本特征之一,对样本同样重要,所以本文在PTSVM的基础上,提出了结合样本空间信息和光谱信息的PTSVM算法,并用于遥感图像的变化检测中。通过实验结果分析,该方法在遥感图像的变化检测中取得了很好的效果,进一步提高了变化检测的准确率。

    Abstract:

    In the algorithms of change detection of remote sensing image based on semisupervised SVM, PTSVM algorithm uses paired labeling rule that once marks only one pair of unlabeled samples to label unlabeled samples, which achieves good results in the change detection of remote sensing image and to some extent, improves the detection accuracy. But PTSVM algorithm uses only spectral information of samples. Sample characteristics information includes not only the spectral information, but also spatial information. Spatial information as one of the basic characteristics of the sample is equally important, so this paper proposes the improved PTSVM algorithm combined spatial information of samples with spectral information of samples in change detection for remote sensing images. Through the experimental results analysis, the method has achieved good results in change detection of remote sensing image, and further improves the change detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

高桂荣,严威,夏晨阳,吴国宝.结合空间信息的PTSVM的遥感图像变化检测[J].电子测量技术,2016,39(4):45-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-05-25
  • 出版日期:
文章二维码