基于MCA分解和样本聚类的超分辨率算法
DOI:
CSTR:
作者:
作者单位:

1. 炬芯(珠海)科技有限公司珠海519085; 2. 暨南大学信息科学技术学院广州510632

作者简介:

通讯作者:

中图分类号:

TP3

基金项目:

广东省科技计划(2013B090800022)、广东省科技计划 (2015B090901047)资助项目


The SR algorithm based on MCA decomposition and sample clustering
Author:
Affiliation:

1. Actions (Zhuhai) Technology Co., Limited, Zhuhai 519085,China;2. School of Information Science and Technology, Jinan University, Guangzhou 510632,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对SCSR(sparse coding sparse representation)算法采用通用的过完备字典无法表征多种结构类型的图像以及全局稀疏重构引入过多冗余这2个缺点,提出了基于MCA(morphological component analysis)分解和样本聚类的超分辨率算法。本算法首先采用Kmeans方法对待训练特征块进行聚类,得到多特征字典对来处理不同类型的低分辨率图像。然后在重构阶段,采用MCA方法提取图像的纹理成分进行稀疏重构,对平滑成分进行插值放大。实验结果表明与其他先进的算法相比,该算法能够更好地恢复图像的边缘细节,重构质量更好。

    Abstract:

    In SCSR (sparse coding sparse representation) algorithm, the universal overcompleted dictionary cannot be adapted to variety types of images and too much redundancy is introduced by global sparse reconstruction. To overcome these shortcomings,the SR algorithm based on MCA (morphological component analysis) decomposition and sample clustering is proposed. Firstly, the training feature patchs are clustered by Kmeans algorithm, and then each clustering is trained to get dictionaries, which are used to process variety types of images. Secondly, the image is decomposed into texture component and smooth component by MCA method. The texture component is reconstructed sparsely and the smooth component is enlarged by Bicubic algorithm. Finally, compared with other SR methods, this algorithm can restore the image edge details better.

    参考文献
    相似文献
    引证文献
引用本文

陶永耀,赵新中,梁婉文,石敏.基于MCA分解和样本聚类的超分辨率算法[J].电子测量技术,2016,39(6):57-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-07-21
  • 出版日期:
文章二维码