基于CSS技术的室内导航系统设计与实现
DOI:
CSTR:
作者:
作者单位:

华中师范大学物理科学与技术学院武汉430079

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

华中师范大学自主科研基金项目“室内无线测距与定位方法研究”(230/20205140085)资助项目


Indoor navigation system design and implementation based on CSS technology
Author:
Affiliation:

Institute of Physics Science and Technology, Center China Normal University, Wuhan 430079, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    设计并实现了一种基于Chirp信号往返飞行时间(round time of flight, RTOF)的室内导航系统,用于在复杂建筑物内部多个目标点的定位及跟踪。系统采用时分算法允许多标签同时定位,移动标签与锚节点之间实现双边双向测距(symmetrical doublesided twoway ranging, SDSTWR)算法,移动标签并把测距结果传送给定位基站,定位基站再将结果透传到计算中心处理。计算中心利用改进的卡尔曼滤波算法减弱NLOS误差影响,采用加权矫正三点定位算法计算出移动标签位置信息,并存储定位结果于定位服务器。客户端可访问定位服务器查看所需要标签的定位结果。实验结果表明,在特定复杂楼层内,系统定位精度能达到2 m,满足室内导航精度需求。本系统实现了定位刷新时间与标签个数的最优化,也具有较好的规模伸缩度以及易部署性。

    Abstract:

    An indoor navigation system based on the RTOF (round time of flight) of Chirp signal is designed and implemented, which is used to locate and track multiple targets in a complex building interior. Time division multiplexing method to allow more tag positioning simultaneously, SDSTWR (symmetrical doublesided twoway ranging) algorithm is realized between mobile tag and anchor node, then tag sends the result to the positioning base station, and through to the computing center. Computing center uses the improved kalman filtering algorithm to reduce the NLOS error and the weighted correction three points localization algorithm to calculate the mobile tag location information, which is stored in the location server finally. The client is able to access to the server to check the result of appointed tag. The experiments show that, within certain complex floor structures, the precision can reach 2 m, meet the demand if indoor navigation accuracy. The system has also realized refresh time optimization with tag number, with flexible and deployable.

    参考文献
    相似文献
    引证文献
引用本文

王智文,杨祯,陈旻哲,刘守印.基于CSS技术的室内导航系统设计与实现[J].电子测量技术,2016,39(7):20-27

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-08-17
  • 出版日期:
文章二维码