基于SIFT特征点检测与维纳滤波的图像复原算法
DOI:
CSTR:
作者:
作者单位:

陕西工业职业技术学院咸阳712000

作者简介:

通讯作者:

中图分类号:

TP391;TN919.81

基金项目:

陕西工业职业技术学院自然科学研究计划项目(ZK1323)资助


Image restoration algorithm based on SIFT feature point detection and wiener filtering
Author:
Affiliation:

Shanxi Polytechnic College, Xianyang, Shanxi, 712000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决当前图像局部模糊程度不一,导致图像复原效果欠佳,本文分别从图像特征点检测与滤波复原的角度出发,提出了基于SIFT特征点检测与维纳滤波的图像复原算法。根据尺度空间极值特性,进行关键点定位和方向分配,设计特征点描述子,得到模糊图像特征点分布,以建立圆盘复原模型中心坐标。基于点扩散圆盘函数特性,耦合傅里叶变换和最小二乘滤波,设计了无约束维纳滤波算子,达到图像复原处理的目的。根据特征角点定位,引导复原滤波圆盘函数计算起始位置,完成图像复原。实验测试结果显示,与当前复原算法相比, 本算法拥有更高的复原视觉质量。

    Abstract:

    In order to solve the current local blur degree, resulting in poor effect of image restoration, this paper recovered from image feature point detection and filtering angle, proposed image restoration algorithm SIFT feature point detection and based on Wiener filter. First of all, according to the characteristics of the scale space extrema, key point positioning and direction of distribution, the design of feature descriptor, fuzzy image feature point distribution, to establish the coordinates of the center of the purpose of disc restoration model. Then, based on the characteristics of the point spread disk function, coupled with Fourier transform and least squares filtering, an unconstrained Wiener filter operator is designed to achieve the purpose of image restoration. Finally, according to the characteristics of the corner location to guide the restoration of the filter disk function to calculate the starting position, based on software engineering to achieve the restoration algorithm. The experimental results show that compared with the current restoration algorithm, the restoration technique has higher accuracy and stability.

    参考文献
    相似文献
    引证文献
引用本文

方小艳.基于SIFT特征点检测与维纳滤波的图像复原算法[J].电子测量技术,2017,40(6):105-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-19
  • 出版日期:
文章二维码