基于FP-growth的数据关联改进算法
DOI:
CSTR:
作者:
作者单位:

1.南京电子技术研究所 南京 210013; 2.南京轨道交通系统工程有限公司 南京 210013

作者简介:

通讯作者:

中图分类号:

TP311;TN915.07

基金项目:


Advanced data association algorithm based on FP-growth
Author:
Affiliation:

1. Nanjing Research Institute of Electronics Technology, Nanjing 210023,China; 2. Nanjing Rail Transit Systems Co., Ltd., Nanjing 210013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着现如今数据收集能力和存储能力的大大增强,大规模数据挖掘分析的重要性越来越显得重要。然而,对大规模数据的分析挖掘并不是一件容易的事情。因此,为了可以更高效的分析这些数据,很多新的算法和数据结构逐渐被引入到了数据挖掘分析中去。针对关联分析,提出了一种名为高效频繁模式挖掘(advanced frequent pattern mining,AFPM)算法。基于前置频繁模式树(prefrequent pattern tree,PFPtree)来提升关联分析的性能,并提供了相应的算法来实现基于这种数据结构的关联分析。通过大量的实验数据验证了这种新型的数据结构在关联分析问题上是优于频繁模式增长(FPgrowth)算法。

    Abstract:

    With the current data collection capacity and storage capacity greatly enhanced, the importance of largescale data mining analysis more and more important. However, the analysis of largescale data mining is not an easy thing. Therefore, in order to be able to more efficient analysis of these data, many new algorithms and data structures are gradually introduced to the data mining analysis. This paper is based on the correlation analysis, based on this article, proposed a called advanced frequent pattern mining (AFPM) algorithm. This algorithm is based on the prefrequent pattern tree (PFPtree) to improve the performance of association analysis and provide the corresponding algorithm to implement the association analysis based on this data structure. It is proved that this new data structure is superior to FPgrowth algorithm in association analysis problem through a large number of experimental data.

    参考文献
    相似文献
    引证文献
引用本文

贺恒松,李文明,李文锋.基于FP-growth的数据关联改进算法[J].电子测量技术,2017,40(9):58-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-22
  • 出版日期:
文章二维码