利用张量模型的MIMO-OFDM中继系统信道估计
DOI:
CSTR:
作者:
作者单位:

海军航空工程学院 烟台 264001

作者简介:

通讯作者:

中图分类号:

TN911.22

基金项目:


Channel estimation of MIMO-OFDM relay system with tensor model
Author:
Affiliation:

Naval Aeronautical Engineering Institute, Yantai 264001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有MIMO-OFDM中继系统中,大多信道估计采用带有训练序列的监督类信道估计算法,其频谱利用率较低。为此,在对MIMOOFDM中继系统和信号建模基础上,提出了一种基于内嵌PARAFAC模型的MIMOOFDM中继系统信道估计,该算法首先利用KhatriRao分解算法估计出中继目的端矩阵,然后利用交替最小二乘算法对源中继信道矩阵和信源矩阵进行估计,最后对算法的计算复杂度和唯一性问题进行了分析。仿真结果表明,相比三线性的最小二乘算法算法,算法具有较低的单次计算复杂度和较快的收敛速度,性能接近传统带有训练序列的监督类信道估计算法。

    Abstract:

    In the existing MIMOOFDM relay system, most channel estimation using the supervised channel estimation algorithm with training sequence has lower spectrum utilization. In this paper, based on the MIMOOFDM relay system and signal modeling, a channel estimation of MIMOOFDM relay system based on embedded PARAFAC model is proposed. Firstly, the KhatriRao decomposition algorithm is used to estimate the relaythe destinationend matrix, and then use the alternating least squares algorithm to estimate the sourcerelay channel matrix and the source matrix. Finally, the computational complexity and uniqueness of the algorithm are analyzed. The simulation results show that the algorithm has lower computational complexity and faster convergence rate than the trilinear least squares algorithm, and the performance is close to the traditional supervised channel estimation algorithm with training sequence.

    参考文献
    相似文献
    引证文献
引用本文

王瑞,芮国胜,张洋.利用张量模型的MIMO-OFDM中继系统信道估计[J].电子测量技术,2017,40(12):246-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-30
  • 出版日期:
文章二维码