基于多特征选择的膝关节骨关节炎SVM自动分级研究
DOI:
CSTR:
作者:
作者单位:

1.南京医科大学 生物医学工程学系 南京 210000; 2.南京市第一医院 南京 210000

作者简介:

通讯作者:

中图分类号:

R318.5

基金项目:

国家重点研发计划(2017YFB1303203);江苏省研究生研究与实践创新计划(JX12413673)


Classification of knee osteoarthritis by SVM based on multi-feature selection
Author:
Affiliation:

1.Department of Biomedical Engineering, Nanjing Medical University, Nanjing 210000,China; 2.Nanjing First Hospital, Nanjing 210000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    骨关节炎是中老年人群最常见的关节疾病,该疾病及其并发症占据了全球10%的医疗问题。其中膝关节骨关节炎最为严重,致残风险极高。尽早发现并介入治疗对于缓解其症状,减少其危害有着至关重要的意义。本文收集了大量膝关节DR影像数据,对获得的数据进行多种纹理特征和融合特征的提取,将提取的特征向量进行各种组合作为输入训练SVM模型,我们使用网格搜索法进行了进行参数寻优。训练完成的模型在测试集上的准确率最高可以达到84.29%,具有良好的智能分类诊断性能。使用训练完的SVM模型,可以有效的对膝关节骨性关节炎进行分级,辅助医生进行诊断,对膝关节骨关节炎的早期诊断,尽早介入治疗有着重要意义。

    Abstract:

    Osteoarthritis is the most common joint disease in middle-aged and elderly people. The disease and its complications account for 10 per cent of global medical problems. Among them, Osteoarthritis of the knee is the most serious and the risk of disability is very high. Early detection and interventional treatment is of great significance to relieve the symptoms and reduce the harm. In this paper, a large number of knee joint DR image data were collected. Various texture features and fusion features were extracted from the obtained data. Then, various combinations of extracted feature vectors were used as input to the training support vector machine model. We use the grid search method to optimize the parameters. The highest accuracy of the trained model on the test set can reach 84.29%, which has good intelligent classification and diagnosis performance. Using the trained SVM model can effectively grade knee osteoarthritis and assist doctors in diagnosis, which is of great significance for early diagnosis and early intervention treatment of knee osteoarthritis.

    参考文献
    相似文献
    引证文献
引用本文

刘志鹏,李修寒,冯锐,姚庆强,王伟,吴小玲.基于多特征选择的膝关节骨关节炎SVM自动分级研究[J].电子测量技术,2021,44(5):129-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码