点云数据与BIM的古建筑三维模型构建方法研究
DOI:
CSTR:
作者:
作者单位:

陕西铁路工程职业技术学院测绘工程系,陕西渭南 714099

作者简介:

通讯作者:

中图分类号:

TP23

基金项目:

陕西铁路工程职业技术学院科研立项研究生项目(ky2019-13)、(ky2019-17)


Research on 3D modeling of ancient buildings based on point cloud data and BIM
Author:
Affiliation:

Department Of Surveying And Mapping Engineering, Shaanxi Railway Institute,Weinan,Shaanxi 714099

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了加强对古建筑的保护,避免对古建筑造成“二次破坏”,采用GLS-2000三维激光扫描仪采集古建筑的信息,应用改进的ICP算法实现古建筑点云数据拼接,Geomagic软件实现点云数据去噪与精简,Revit软件提取古建筑特征线并进行3D建模。最后以古建筑的屋顶构件、廊桥构件为例,对BIM技术的应用效果进行分析,并测试了改进的ICP算法的应用效果。结果表明:通过BIM扫描技术可以准确确定古建筑的尺寸信息,建立古建筑3D模型,有效保存古建筑的信息。改进ICP算法的配准耗时为5.623秒,配准精度为4.21λ/mm,点云三维模型的误差均值为0.113m,中误差为0.154m,应用效果好。

    Abstract:

    in order to strengthen the protection of ancient buildings and avoid "secondary damage" to ancient buildings, gls-2000 3D laser scanner collects the information of ancient buildings, uses improved ICP algorithm to realize the point cloud data splicing of ancient buildings, Geomagic software to realize the point cloud data denoising and simplification, and Revit software to extract the feature lines and 3D modeling of ancient buildings. Finally, taking the roof components and the gallery components of ancient buildings as examples, the application effect of bim scanning technology is analyzed, and the application effect of the improved ICP algorithm is tested. The results show that bim scanning technology can accurately determine the size information of ancient buildings, establish 3D model of ancient buildings, and effectively preserve the information of ancient buildings. The registration time of the improved ICP algorithm is 5.623 seconds, the registration accuracy is 4.21 λ / mm, the average error of point cloud 3D model is 0.113 m, and the mean square error is 0.154 M,and the application effect is good.

    参考文献
    相似文献
    引证文献
引用本文

牛丽娟,李立功.点云数据与BIM的古建筑三维模型构建方法研究[J].电子测量技术,2021,44(8):115-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码