基于Inception-ResNet模型的轴承故障分类
DOI:
CSTR:
作者:
作者单位:

昆明理工大学 信息工程与自动化学院 昆明 650500

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

国家自然科学基金(61263023,61863016)资助项目


Fault classification of bearing based on the Inception-ResNet model
Author:
Affiliation:

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对常用的故障诊断深度学习方法需要较高的设备成本与较长的训练时间,本文提出一种基于Inception-ResNet模型的轴承故障分类方法。通过使用Inception网络的并行结构使网络学习到不同尺度的特征,引入了残差结构来减少因网络加深所导致的退化现象,并加入了三维卷积,使不同通道间的信息相互交融。为验证本文方法的性能,使用凯斯西储大学数据集与IMS数据集进行验证,并与传统的浅层学习方法和深度学习方法进行了对比实验。结果表明,相较于其他方法,本文方法不仅拥有优良的诊断能力,在资源占用与训练效率上也更加优秀。

    Abstract:

    In view of the high equipment cost and long training time required by common deep learning methods for fault diagnosis, this paper proposes a bearing fault classification method based on the Inception-ResNet model. By using the Inception network's parallel structure, the network learns features of different scales, resizing structures are introduced to reduce degradation caused by network deepening, and three-dimensional convolution is added to allow information between different channels to blend. In order to verify the performance of this method, case Western Reserve University data set and IMS data set were used for verification, and compared with the traditional shallow learning method and deep learning method, experiments were conducted. The results show that, compared with other methods, the method presented in this paper not only has excellent diagnostic ability, but also is better in terms of resource utilization and training efficiency.

    参考文献
    相似文献
    引证文献
引用本文

孔子宇,王海瑞.基于Inception-ResNet模型的轴承故障分类[J].电子测量技术,2021,44(5):55-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码