基于激光雷达和相机融合的目标检测
DOI:
CSTR:
作者:
作者单位:

上海理工大学 光电信息与计算机工程学院,上海市 杨浦区200093

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Target detection based on the fusion of lidar and camera
Author:
Affiliation:

School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Yangpu District,ShangHai 200093,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单一传感器在智能车辆目标检测中的局限性,提出了一种利用四线激光雷达和相机融合的目标检测算法。通过激光雷达得到目标的位置和编号信息,并将点云聚类后得到的结果通过激光雷达和相机联合标定的参数矩阵投影到图像上得到目标的边界框。将采集到的图片通过YOLOv3网络得到目标的边界框、类别和置信度。然后,采用决策级融合方法将激光雷达和相机的检测结果进行融合,得到了最终的检测结果。实验结果表明该算法对车辆的检测率为94.8%,行人的检测率为96.4%,相比其他方法能够提高目标的检测率和鲁棒性。

    Abstract:

    Aiming at the limitation of a single sensor in intelligent vehicle target detection, a target detection algorithm based on four-layer lidar and camera fusion was proposed. The position and number information of the target is obtained by lidar, and the result obtained after point cloud clustering is projected onto the image through the parameter matrix of joint calibrated by lidar and camera to obtain the bounding box of the target. The boundary box, category and confidence of the target are obtained by the collected images through the yolov3 network. Then, the decision level fusion method is used to fuse the detection results of lidar and camera, and the final detection result is obtained. The experimental results show that the detection rate of vehicle and pedestrian is 94.8% and 96.4% respectively. Compared with other methods, this algorithm can improve the detection rate and robustness.

    参考文献
    相似文献
    引证文献
引用本文

李研芳,黄影平.基于激光雷达和相机融合的目标检测[J].电子测量技术,2021,44(5):112-117

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码