基于多超球SVM的电机转子断条故障诊断
DOI:
CSTR:
作者:
作者单位:

烟台汽车工程职业学院,山东 临沂 264000

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:


Multiple hyper-spheres support vector machine for motor broken rotor bar fault diagnosis
Author:
Affiliation:

Yantai Automobile Engineering Professional College, Linyi 264000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电机转子断条故障诊断问题,设计了一个故障诊断模型。本文将电机转子断条故障诊断视为多分类问题,提出了一种多超球支持向量机(multiple hyper-spheres support vector machine, MHSVM)故障诊断模型。MHSVM是通过利用支持向量数据描述(support vector data description, SVDD),结合二叉树结构的方法,构造的一种多分类模型。为验证本文提出算法的有效性,将MHSVM与支持向量机(support vector machine, SVM)和神经网络算法(BP)进行了对比实验。结果为本文提出的诊断模型能够实现94.92%的诊断率,而SVM模型和BP模型分别实现92.06%和89.06%的诊断率。本文提出的诊断模型的诊断率是三个模型中最高的。实验结果表明,基于SVM的故障诊断模型的诊断效果优于基于BP算法的诊断效果。同时,本文提出的MHSVM对转子断条故障具有最好的诊断效果,这证明了本文提出模型的适用性和有效性。

    Abstract:

    Aiming at the problem of motor broken rotor bar fault diagnosis, a fault diagnosis model is designed. This paper transforms the rotor broken bar fault diagnosis problem into a classification problem, thus a fault diagnosis model based on multiple hyper-spheres support vector machine (MHSVM) is proposed. MHSVM is a multi-class classification model, which is constructed by using support vector data description (SVDD) and binary tree structure. To verify the effectiveness of the proposed algorithm, MHSVM is compared with support vector machine (SVM) and neural network algorithm (BP). The results show that the diagnosis rate of MHSVM is 94.92%, while the diagnosis rate of SVM model and BP model is 92.06% and 89.06% respectively. As can be seen, the diagnosis rate of the proposed model is the highest among the three models. The experimental results show that the effect of the fault diagnosis models based on SVMs is better than that of BP. Meanwhile, MHSVM has the best effect for broken rotor bar fault diagnosis, which proves the applicability and effectiveness of the MHSVM.

    参考文献
    相似文献
    引证文献
引用本文

唐国锋.基于多超球SVM的电机转子断条故障诊断[J].电子测量技术,2021,44(5):1-5

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码