基于循环神经网络的低复杂度最小和译码算法
DOI:
CSTR:
作者:
作者单位:

华中师范大学 武汉 430079

作者简介:

通讯作者:

中图分类号:

TN911.22

基金项目:


Low complexity minimum sum decoding algorithm based on recurrent neural network
Author:
Affiliation:

Central China Normal University ,Wuhan 430079, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对神经网络信念传播译码算法具有高复杂度的问题,提出一种新的低复杂度的深度学习译码算法,降低译码方法硬件实现时的复杂度。 通过给出置信传播译码算法替代图形,结合Min-sum算法,去除了双曲函数运算并将工程实际中需要消耗大量资源的乘法操作转换为简单的加法操作。 结合循环神经网络结构,将多层不同的参数约束成单层的参数。结合不同信息的属性,不对来自信道的对数似然比消息附加额外的参数,只是将参数附加于校验节点更新时的边缘上。结合边缘参数的分布,发现部分权重数值与1偏离很大,判定为需要添加权重的边缘。提取有效深度神经网络权重进行训练来降低译码网络的参数数目。经实验验证,所提出的译码方法有效的降低了神经网络的译码复杂度,将神经网络参数减少约20%。并且算法与置信传播译码相比,在高信噪比区域取得1dB的性能提升,便于硬件实现,具有较强的实用性。

    Abstract:

    A new low-complexity deep learning method is proposed to improve the complex neural network belief propagation algorithm, and reduce the complexity of the hardware implementation. By giving an alternative graph of the confidence propagation decoding algorithm and combining with the min-sum algorithm, the hyperbolic function operation is removed and the multiplication operation which consumes a lot of resources in engineering practice is converted into a simple addition operation. And combined with the recurrent neural network, different parameters of multiple layers are constrained into single layer parameters. Considering the attributes of different information, no additional parameters are attached to the log-likelihood ratio message from the channel, parameters are attached to the edge when the check node is updated. Combined with the distribution of edge parameters, it is found that part of weight values deviate greatly from 1, which is determined as the edge that needs to add weight. parameters of neural network are reduced by about 20%. performance of the proposed algorithm is improved by 1dB compared with the belief propagation algorithm in the high SNR regime, which is convenient for hardware implementation and has strong practicability.

    参考文献
    相似文献
    引证文献
引用本文

孙浩杰,夏巧桥.基于循环神经网络的低复杂度最小和译码算法[J].电子测量技术,2021,44(5):74-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码