基于大间隔分布Pin-SVM算法的车标分类识别
DOI:
CSTR:
作者:
作者单位:

烟台汽车工程职业学院,山东 烟台 264000

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:


Vehicle Logo Classification Method Based on Pin-SVM with Large Margin Distribution
Author:
Affiliation:

Yantai Automobile Engineering Professional College, Yantai 264000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车标分类是车辆识别的方法之一。车标分类广泛应用于政府大楼、校园、道路等场所的安全防护。本研究的主要目的是利用支持向量机(Support Vector Machine, SVM)分类方法对车标进行识别。针对车标识别问题,本文设计了一种基于大间隔分布的Pin-SVM (Pin-SVM with large margin distribution, LMD-Pin-SVM)模型。首先,利用间隔均值和方差定义间隔分布,然后将最优间隔分布引入到Pin-SVM模型中,建立LMD-Pin-SVM线性模型。此外,利用核技术将线性LMD-Pin-SVM模型扩展到非线性情况,并应用于车标识别中。实验结果显示,本文提出的模型在泛化性能上优于其他算法。LMD-Pin-SVM模型可以有效的抑制噪声对分类模型的不利影响,提高不同车标图像的分类正确率。

    Abstract:

    Vehicle logo classification is one of the methods of vehicle recognition. Vehicle logo classification is widely used in the safety protection of government buildings, campus, roads and other places. Aiming at the vehicle logo classification, a Pin-SVM based on large margin distribution (LMD-Pin-SVM) is proposed. Firstly, the margin distribution is expressed with margin mean and margin variance. Then introducing the optimal margin distribution into Pin-SVM and the linear LMD-Pin-SVM is built. In addition, the linear LMD-Pin-SVM is extended to the nonlinear case with kernel trick. And the nonlinear LMD-Pin-SVM is applied to vehicle recognition. All experiments show that the proposed method is superior to the state-of-the-art methods in generalization performance. Our LMD-Pin-SVM can effectively suppress the adverse effects of noise on the classification model and improve the classification accuracy of different vehicle logo images.

    参考文献
    相似文献
    引证文献
引用本文

赵玉田.基于大间隔分布Pin-SVM算法的车标分类识别[J].电子测量技术,2021,44(7):55-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-15
  • 出版日期:
文章二维码