视觉分类识别系统设计
DOI:
CSTR:
作者:
作者单位:

1.华南理工大学广州学院工程研究院, 广州 510000; 2.华南理工大学机械与汽车工程学院, 广州 510000

作者简介:

通讯作者:

中图分类号:

TP31

基金项目:


Visual classification and recognition system design
Author:
Affiliation:

1.Engineering Institute,Guangzhou College of South China University of Technology,Guangzhou 510000,China; 2.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对企业生产过程中零件混装问题,设计了使用基于高斯混合模型的背景分离算法,实现稳定且灵活的背景分离效果,使用基于等级灰度、形状相似和简单轮廓的特征提取算法,实现有效且稳定的特征数据提取效果,利用基于xml数据存储的多层神经网络算法,实现物品种类动态变更的效果。通过对图像进行分离、提取、识别后,达到分类的效果,结果表明,该系统不仅可以达到工业环境的稳定且智能的物品分类识别效果,而且在确保99%以上的高分类准确率的同时快速完成了分类任务,为市场多样化的需求提供了简洁有效的解决方案。

    Abstract:

    Aiming at the problem of mixed assembly of parts in the production process of enterprises, the background separation algorithm based on Gaussian mixture model is designed to achieve stable and flexible background separation effect. The feature extraction algorithm based on gray level, similar shape and simple contour is used to achieve effective and stable feature data extraction effect. The multi-layer neural network algorithm based on XML data storage is used to realize the background separation effect The effect of dynamic change of item type. Through the image separation, extraction, recognition, to achieve the effect of classification, the results show that the system can not only achieve the stable and intelligent classification and recognition effect of industrial environment, but also ensure more than 99% of the high classification accuracy at the same time, quickly complete the classification task, and provide a simple and effective solution for the demand of market diversification.

    参考文献
    相似文献
    引证文献
引用本文

翟伟良,姜立标,王熙尧.视觉分类识别系统设计[J].电子测量技术,2021,44(7):118-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-15
  • 出版日期:
文章二维码