基于UCA压缩感知的声源定位算法
DOI:
CSTR:
作者:
作者单位:

中北大学电子测试技术国家重点实验室,太原 030051

作者简介:

通讯作者:

中图分类号:

TN912.34

基金项目:

山西省重点研发计划(201903D121060);山西省回国留学人员科研资助项目(2020-111)


Sound source localization algorithm based on UCA compressed sensing
Author:
Affiliation:

National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对混合声源定位精度低的问题,提出了一种非迭代补全互谱矩阵的算法,利用互谱矩阵的埃尔米特特性,不经过迭代,在不牺牲定位精度的情况下提高计算效率。该方法首先建立一个稀疏模型,通过构造冗余脉冲响应(RIR)矩阵作为压缩感知测量矩阵,将源定位问题转化为压缩感知问题。然后根据多个源方向向量的空间稀疏相关性,引入投影算子,在压缩感知框架下使方位角的均方根误差保持在5%以内。均匀圆阵(UCA)环境下的仿真结果表明,与传统算法相比,该算法具有更好的估计性能。

    Abstract:

    Aiming at the problem of low positioning accuracy of mixed sound source, a non iterative algorithm to complete cross spectral matrix is proposed, which uses the Hermitian characteristics of the cross-spectrum matrix without iteration and improves the computational efficiency without sacrificing positioning accuracy. This method first establishes a sparse model, and converts the source localization problem into a compressed sensing problem by constructing a redundant impulse response (RIR) matrix as a compressed sensing measurement matrix. Then, according to the spatial sparse correlation of multiple source direction vectors, a projection operator is introduced, and the root mean square error of azimuth is kept within 5% under the framework of compressed sensing. The simulation results in the uniform circular array (UCA) environment show that the algorithm has better estimation performance than the traditional algorithm.

    参考文献
    相似文献
    引证文献
引用本文

杨瑞峰,温斐旻,郭晨霞.基于UCA压缩感知的声源定位算法[J].电子测量技术,2021,44(7):46-49

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-15
  • 出版日期:
文章二维码