基于MRF和混合核函数聚类的脑肿瘤图像分割方法
DOI:
CSTR:
作者:
作者单位:

湖南师范大学信息科学与工程学院 长沙 410081

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Brain tumor image segmentation method based on MRF and mixed kernel function clustering
Author:
Affiliation:

College of Computer Science and Engineering, Hunan Normal University, Changsha 410081

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑核磁共振图像经常存在较多噪声,并且边缘不清晰,使得传统的模糊C均值(Fuzzy C-Means,FCM)聚类算法无法获得准确的脑肿瘤分割结果,为此提出一种基于马尔科夫随机场(Markov Random Field,MRF)和混合核函数聚类的脑肿瘤图像分割方法。首先采用粒子群算法初始化聚类中心;然后将传统核模糊聚类算法(KFCM)中的单一高斯核函数替换为混合高斯核函数;最后引入马尔科夫随机场的先验概率,修正算法的目标函数,增强算法的抗噪性。实验结果表明,所提出的算法在脑肿瘤图像分割中具有良好的抗噪性,并且分割精度明显高于传统算法,Dice指标和Jaccard指标的平均值分别达到0.9501和0.9051。

    Abstract:

    Brain MRI images often have a lot of noise, and the edge is not clear, which makes the traditional fuzzy C-means (FCM) clustering algorithm can not obtain accurate brain tumor segmentation results. Therefore, a brain tumor image segmentation method based on Markov random field (MRF) and hybrid kernel function clustering is proposed. Firstly, particle swarm optimization is used to initialize the cluster center; Then, the single Gaussian kernel function in the traditional kernel fuzzy clustering algorithm (KFCM) is replaced by the mixed Gaussian kernel function; Finally, the prior probability of Markov random field is introduced to modify the objective function of the algorithm and enhance the anti noise performance of the algorithm. The experimental results show that the proposed algorithm has good anti noise performance in brain tumor image segmentation, and the segmentation accuracy is significantly higher than the traditional algorithm. The average values of dice index and Jaccard index are 0.9501 and 0.9051 respectively.

    参考文献
    相似文献
    引证文献
引用本文

王志刚,冯云超.基于MRF和混合核函数聚类的脑肿瘤图像分割方法[J].电子测量技术,2021,44(8):93-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码