基于GPR-EN时空混合模型的空气污染物浓度预测
DOI:
CSTR:
作者:
作者单位:

1. 郑州科技学院, 土木建筑工程学院, 郑州, 450064; 2. 郑州航空工业管理学院,管理工程学院,郑州,450064

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

河南省软科学研究计划项目 (192400410118)资助


Prediction of air pollutant concentration based on GPR-EN spatio-temporal hybrid model
Author:
Affiliation:

1. College of Civil and Architectural Engineering, Zhengzhou University of Science and Technology, Zhengzhou, 450064, China 2. School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450064, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的污染物浓度预测方法大多没有兼顾气象数据的时间和空间特征,导致预测精度大打折扣的问题。本文提出一种能够同时提取过程数据时间和空间特征的时空混合预测方法GPR-EN。首先,利用弹性网算法(elastic net, EN)全面分析样本点和目标点的空间关联性,并进行时空数据重构,为预测模型提供最优的变量输入。其次,借助于高斯回归模型(gaussian process regression, GPR)的强泛化能力,能够有效地处理时空数据的复杂非线性特性,更加全面地刻画了历史数据的时空依赖性。最后,在AQI数据集和空气SO2浓度数据集上进行仿真实验,实验结果标明所提方法比对比方法的预测精度提高22%以上。

    Abstract:

    Most of the current pollutant concentration prediction methods do not take into account the temporal and spatial characteristics of meteorological data, which results in a great loss of forecasting accuracy. To this end, this paper presents a spatio-temporal hybrid prediction method (GPR-EN), which can extract both temporal and spatial characteristics of process data and improve the prediction accuracy of pollutant concentration significantly. First, elastic net algorithm is used to comprehensively analyze the spatial correlation between the sample points and the target points, and reconstruct the spatiotemporal data, so as to provide the optimal variable input for the prediction model. Second, with the strong generalization ability of the Gaussian Process Regression model, the complex nonlinear characteristics of spatiotemporal data can be effectively handled, so as to obtain better prediction results. Finally, simulation experiments are carried out on AQI data set and air SO2 concentration data set, and the experimental results show that the prediction accuracy of the proposed method is more than 22% higher than that of the contrast methods.

    参考文献
    相似文献
    引证文献
引用本文

任静,贾佳.基于GPR-EN时空混合模型的空气污染物浓度预测[J].电子测量技术,2021,44(8):54-58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码