生物启发式神经网络的多机器人协作围捕研究
DOI:
CSTR:
作者:
作者单位:

桂林航天工业学院机械工程学院,广西 桂林,541004

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家自然科学基金项目(51965014),广西自然科学基金项目(2018JJA160218),广西高校中青年教师科研基础能力提升项目(2020KY21022)


Research on Multi-robot Cooperative Roundup Based on Biological Heuristic Neural Network
Author:
Affiliation:

School of Mechanical Engineering, Guilin University of Aerospace Technology, Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对未知动态环境中多机器人协作围捕的时间长、成功率低的问题,提出了一种基于生物启发神经网络的新型多机器人协作围捕方法。首先,构建了多机器人协作围捕模型,利用动态联盟策略实现多机器人的联动;其次,构建基于生物启发神经网络的追踪策略,动态指导联盟所有机器人进行追踪;最后,采用编队策略实现目标的围捕。实验结果表明:所提出的方法在单目标、多目标、部分机器人故障、不同形状障碍物、不同规则环境等情况下平均捕获时间分别为12.7s、22.3s、34.2s、17.7s和28.5s,平均捕获成功率为97.4%;与其他多机器人协作围捕算法相比,本文提出的算法在捕获时间和捕获成功率上具有较大优势。

    Abstract:

    Aiming at the problem of long time and low success rate of multi-robot cooperative rounding in unknown dynamic environment, a new multi-robot cooperative rounding method based on biologically inspired neural network is proposed. First, a multi-robot collaborative rounding model is built, and the dynamic alliance strategy is used to realize the linkage of multiple robots. Second, a tracking strategy based on biologically inspired neural networks is constructed to dynamically guide all robots in the alliance to track. Finally, a formation strategy is used to achieve the target rounding. The experimental results show that the average capture time of the proposed method is 12.7s, 22.3s, 34.2s, 17.7s and 28.5s under the conditions of single target, multiple targets, partial robot failures, obstacles of different shapes, and different regular environments. The average capture success rate is 97.4%; compared with other multi-robot cooperative hunting algorithms, the algorithm proposed in this paper has advantages in capture time and capture success rate.

    参考文献
    相似文献
    引证文献
引用本文

陈志,邹爱成.生物启发式神经网络的多机器人协作围捕研究[J].电子测量技术,2021,44(10):82-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码