基于鲁棒最大单纯形体积的高光谱图像快速端元提取
DOI:
CSTR:
作者:
作者单位:

1.郑州工商学院 工学院,河南 郑州 451400;2.河南工程学院 计算机学院,河南 郑州 451191

作者简介:

通讯作者:

中图分类号:

TP751.2

基金项目:

河南省教育厅人文社会科学研究项目(No:2020-ZDJH-084);河南省科技攻关项目(No:152102210027)


Robust Maximum Simplex Volume-Based Method for Fast Endmember Extraction of Hyperspectral Data
Author:
Affiliation:

1. Institute of Technology ,Zhengzhou Technology and Business University,Zhengzhou,451400, China; 2. College of Computer Science, Henan University of Engineering,Zhengzhou,451191, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于最大单纯形体积方法的端元提取算法通常涉及到对全局像素的处理且对噪声敏感的问题,本文提出了能快速从高光谱图像中提取端元的鲁棒最大单纯形体积端元提取算法。首先,该算法采用主成分分析对高光谱图像降维至p-1维子空间。随后,对于降维的子空间,算法采用凸包检测算法获取子空间下的凸包边界点。接着,对于检测到的凸包边界点,算法迭代选取p个数据点并计算其行列式体积,直至选取出p个能产生最大单纯形体积的数据点。最后将提取的p个数据点逆变换至原始维度空间从而获取去噪后的p个端元。在模拟数据集和真实数据集上的实验结果表明:提出的算法能快速提取弱噪声的端元。该算法能满足高光谱端元提取领域中的高精度,实时性强的要求。

    Abstract:

    In order to solve the problems that maximum simplex volume-based endmember extraction algorithms (EEAs) involve processing entire pixels and are sensitive to noises, this paper proposes a robust maximum simplex volume-based EEA for quickly selecting endmembers from hyperspectral images. The proposed algorithm first applies principal component analysis to reduce the hyperspectral image into p-1 subspace. It then detects convex hull points from each component pair by employing a convex hull algorithm. Next, it iteratively specifies p points and their simplex volume until they can provide a maximum simplex volume. Finally, it transforms p points into original dimensionality and obtains p denoised endmembers. Experiments conducted on synthetic and real hyperspectral images demonstrate that the proposed algorithm can quickly extract endmembers from the denoised hyperspectral. The proposed method can perfectly meet the requirements of high endmember accuracy and real-time in the field of hyperspectral endmember extraction.

    参考文献
    相似文献
    引证文献
引用本文

董涛,秦勤.基于鲁棒最大单纯形体积的高光谱图像快速端元提取[J].电子测量技术,2021,44(10):121-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码