基于SAGA-BP神经网络室内定位算法研究
DOI:
CSTR:
作者:
作者单位:

中北大学 信息与通信工程学院,太原 030051

作者简介:

通讯作者:

中图分类号:

TP183;TN212

基金项目:

中北大学重点实验室开放研究基金(DXMBJJ2018-08)、山西省重点研发计划资助项目(201603D121006-1)


Research on indoor location algorithm based on SAGA-BP neural network
Author:
Affiliation:

School of Information and Communication Engineering,North University of China,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于ZigBee接收信号强度指标的室内定位由于其成本低、硬件功耗低和易于实现而受到越来越多的研究者关注和使用。由于存在多径效应和阴影效应的影响,传统的室内定位算法无法获得良好的定位效果。为了提高传统的无线传感器网络室内定位算法的定位精度,本文提出了退火算法(SA)与遗传算法(GA)优化神经网络(SAGA-BP)的室内定位算法,采用退火算法结合遗传算法优化神经网络算法的初始权值和初始阈值。仿真实验表明:仿真中添加一定的随机噪声,得出SAGA-BP算法的平均定位误差为0.40m,最大定位误差为0.83m;相比于神经网络(BP)定位算法和遗传算法改进神经网络(GA-BP)定位算法的定位精度分别提高了56%和8.6%,有效的提高室内定位精度。

    Abstract:

    Indoor positioning based on ZigBee received signal strength index has attracted more and more researchers' attention and use because of its low cost, low hardware power consumption and easy implementation. Due to the influence of multipath effect and shadow effect, the traditional indoor positioning algorithm can not obtain good positioning effect. In order to improve the positioning accuracy of traditional wireless sensor network indoor positioning algorithm, this paper proposes an indoor positioning algorithm based on annealing algorithm (SA) and genetic algorithm (GA) optimized neural network (saga-bp). The initial weight and initial threshold of neural network algorithm are optimized by using annealing algorithm mechanism combined with genetic algorithm. The simulation results show that: the average positioning error of saga-bp algorithm is 0.40 m and the maximum positioning error is 0.83 m by adding a certain amount of random noise in the simulation; compared with the neural network (BP) positioning algorithm and genetic algorithm, the positioning accuracy of improved neural network (GA-BP) positioning algorithm is improved by 56% and 8.6%, which effectively improves the indoor positioning accuracy.

    参考文献
    相似文献
    引证文献
引用本文

朱清山,王 伟.基于SAGA-BP神经网络室内定位算法研究[J].电子测量技术,2021,44(9):100-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-29
  • 出版日期:
文章二维码