基于联邦深度强化学习的车联网资源分配
DOI:
CSTR:
作者:
作者单位:

1.上海大学 上海先进通信与数据科学研究院 上海 200444;2. 上海大学 特种光纤与光接入网重点实验室 上海 200444;3. 上海大学 特种光纤与先进通信国际合作联合实验室 上海 200444;4. 上海大学经济学院,上海 200444

作者简介:

通讯作者:

中图分类号:

TN929.5

基金项目:

国家重点研发计划资助( 2019YFE0196600),国家自然科学基金资助(61501289,61671011,61420106011,61701293)


Internet of Vehicles Resource Management Based on Federal Deep Reinforcement Learning
Author:
Affiliation:

1. Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444,China; 2. Key laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444,China; 3. Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444,China;4. School of Economics of Shanghai University, , Shanghai University, Shanghai 200444,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆通信(Vehicle to Everything,V2X)能够有效的提高交通安全性和移动性,是车辆部署场景中的关键技术之一。V2X通信链路需要满足不同应用的服务质量(Quality of Service, QoS)要求,如车对车(Vehicle to Vehicle,V2V)链路的延迟和可靠性要求。面向车辆高速移动性导致的无线信道快速变化,为保证不同车辆链路的QoS约束和车辆动态网络的鲁棒性,提出一种基于联邦深度强化学习(Federal Deep Reinforcement Learning,FDRL)的频谱分配和功率控制联合优化框架。框架首先根据不同车辆链路需求提出了对应的优化问题,并定义了强化学习的状态空间、动作空间和奖励函数;然后介绍了联邦深度强化学习的训练框架;最后,通过分布式的车辆端强化学习和基站聚合平均训练,找到最佳的频谱分配和功率控制策略。仿真结果表明,与其他对比算法相比,所提出算法能够提高车对基站(Vehicle to Infrastructure,V2I) 的总用户信道容量,并保证了新加入车辆时动态网络的鲁棒性。

    Abstract:

    Vehicle to Everything (V2X) communication, which can effectively improve traffic safety and mobility, is one of the key technologies in vehicle deployment scenarios. V2X communication links need to meet different Quality of Service (QoS) requirements for different applications, such as the latency and reliability requirements of Vehicle to Vehicle (V2V) links. Considering rapid changes in wireless channels due to vehicles high mobility, while ensuring QoS constraints for different vehicle links and improving the robustness of dynamic networks, a joint optimization framework based on Federal Deep Reinforcement Learning (FDRL) for spectrum allocation and power control is proposed. The framework first proposes the corresponding optimization problems according to different vehicle link requirements, and defines the state space, action space and reward function for reinforcement learning. Then the joint deep learning reinforcement learning training framework is given. Finally, the optimal spectrum allocation and power control strategies are found by distributed vehicle-side reinforcement learning and base station aggregation averaging training. Simulation results show that the proposed framework can improve the total transmission rates of all the vehicle-to-infrastructure (V2I) users and guarantee the robustness of the network when new vehicles are connected to the network compared with other comparative algorithms.

    参考文献
    相似文献
    引证文献
引用本文

王晓昌,吴璠,孙彦赞,吴雅婷.基于联邦深度强化学习的车联网资源分配[J].电子测量技术,2021,44(10):114-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码