基于改进YOLOv3的密集行人检测
DOI:
CSTR:
作者:
作者单位:

1. 上海大学 通信与信息工程学院 上海 200072;2. 上海大学 智慧城市研究院 上海 200072

作者简介:

通讯作者:

中图分类号:

TP391.41;TP332

基金项目:

上海市科委港澳台科技合作项目(18510760300)、中国博士后基金项目(2020M681264)资助


Dense pedestrian detection based on improved YOLOv3
Author:
Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China; 2. Institute of Smart City, Shanghai University, Shanghai 200072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人检测是目标检测领域的一个重要分支,目前行人检测算法已经取得了较好的发展,但拥挤场景下存在着行人间的严重遮挡,这为检测任务带来了极大的挑战。为有效缓解该问题,本文在YOLOv3的基础上进行改进,提出单阶段密集行人检测算法:Crowd-YOLO,该算法将可见框标注信息加入到网络中,使网络同时预测全身框与可见框信息从而提升检测性能;提出时频域融合注意力模块(TFFAM),将频域通道注意力和空间注意力加入到网络中重新分配特征权重;采用数据关联型上采样代替传统的双线性插值,使深层特征图获取更为丰富的信息表达。本文使用非常具有挑战性的大型拥挤人群场景数据集CrowdHuman进行训练和测试,实验结果表明,本文所提方法比基础网络在AP50指标上提高了约3.7%,在召回率(Recall)指标上提高了3.4%,其中时频域融合注意力模块为网络带来了2.3%AP的性能增益。实验结果验证了本文所提方法在拥挤人群场景下的有效性。

    Abstract:

    Pedestrian detection is an important branch in the field of object detection, and pedestrian detection algorithms have been well developed, but there exists severe occlusion between pedestrians in crowded scenes, which makes a great challenge for the detection task. To effectively alleviate this problem, this paper improves on YOLOv3 and proposes a single-stage dense pedestrian detection algorithm: Crowd-YOLO, which adds visible frame labeling information to the network to assist training, so that the network can predict both full-body frame and visible frame information to improve detection performance; proposes a time-frequency domain fused attention module (TFFAM), which adds frequency-domain channel attention and spatial attention to the network to redistribute features; uses data correlation upsampling instead of traditional bilinear interpolation to obtain a richer information representation of deep feature maps. This paper uses the very challenging large crowd scenario dataset CrowdHuman for training and testing. The experimental results show that the proposed method improves the AP50 metric by about 3.7% and the recall metric by 3.4% over the baseline, with the time-frequency domain fused attention module bringing a 2.3% AP performance gain. The experimental results verify the effectiveness of the proposed method in crowded scenarios.

    参考文献
    相似文献
    引证文献
引用本文

邓杰,万旺根.基于改进YOLOv3的密集行人检测[J].电子测量技术,2021,44(11):90-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-18
  • 出版日期:
文章二维码