改进的基于时空累积图的车流量检测算法
DOI:
CSTR:
作者:
作者单位:

东南大学成贤学院 电子与计算机工程学院,江苏南京,210088

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

东南大学成贤学院青年教师科研发展基金项目“基于YOLO算法的施工现场安全隐患智能分析方法研究”(z0037)资助


Improved traffic flow detection algorithm based on space-time accumulated figure
Author:
Affiliation:

Department of Electronic and Computer Engineering, Southeast University Chengxian College,Jiangsu Nanjing 210088

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的视频车流量检测算法采用的特征单一、天气鲁棒性差,易受车辆遮挡等问题,提出一种融合时间空间特征的车流量检测方法。以前景和背景图片的分块的互相关归一化值作为检测车辆经过的特征,在时间上累积得到时空累积特征图,在时空累积图上对特征值进行分析处理,并引入深度学习目标检测算法辅助进行背景更新和消除车辆因遮挡等问题所导致的漏检,并对行人、自行车等干扰因素进行校正,达到统计车流量的目的。实验表明,本文算法准确率一般能达到91%以上,在大部分情况下都优于传统的帧间差法和光流法,且实时性好,能较好满足车流量检测系统的要求。

    Abstract:

    Aiming at the problems of the traditional video traffic flow detection algorithm, such as single feature, poor weather robustness and easy to be blocked by vehicles, a traffic flow detection method combining temporal and spatial features was proposed. To the cross-correlation of foreground and background image blocking normalized values as a feature of testing vehicles through accumulation plan get space-time characteristic figure on time, on time accumulated figure to analysis the characteristic value, and the introduction of deep learning target detection algorithm assisted background updating and eliminate the problem such as vehicles for shade caused by the leak, and correction for pedestrians, bicycles and other interference factors to achieve the objective of the statistics of the number of cars. Experimental results show that,the accuracy of the algorithm in this paper can generally reach more than 91%, which is better than the traditional frame difference method and optical flow method in most cases. Moreover, the real-time performance is good, which can better meet the requirements of the traffic flow detection system.

    参考文献
    相似文献
    引证文献
引用本文

郁佳佳,徐玉菁,左梅,黄卉,陆清茹.改进的基于时空累积图的车流量检测算法[J].电子测量技术,2021,44(11):148-155

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-18
  • 出版日期:
文章二维码