基于热成像与灰度转换技术的光伏阵列缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.福建工程学院,电子信息与电气技术国家级实验教学示范中心 福州 350118;2. 福建工程学院微电子技术研究中心 福州 350118

作者简介:

通讯作者:

中图分类号:

TK514; TP391.41

基金项目:

平板显示国家地方联合工程实验室开放基金项目(KF1802,GY-Z18038);面向医学图像语义分割的新型卷积神经网络模型设计方法研究(20120J01879)


Defect detection method for photovoltaic arrays based on thermal imaging and gray conversion technology
Author:
Affiliation:

1. National Demonstration Center for Experimental Electronic Information and Electrical Technology Education, Fujian University of Technology, Fuzhou 350118, China; 2. Research Center for Microelectronics Technology, Fujian University of Technology, Fuzhou 350118, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏阵列的缺陷检测及其影响评估对于提高其系统的性能和可靠性具有重要意义。针对光伏阵列热斑缺陷的检测图像存在细节缺失和易受噪声干扰的问题,为了能够快速地识别缺陷,准确地分析其损坏程度,提出了一套系统性的检测方案。使用手持热成像仪对光伏阵列进行拍摄,将所获取的图像传输到计算机上,并通过灰度化处理将原始红绿蓝色彩模式(Red-Green-Blue color mode, RGB)图像转化为灰度图像。针对传统热成像检测技术存在效率低与缺少缺陷衡量标准等缺点,提出了一种灰度转换算法,首先将灰度图像进行K均值聚类 (k-means clustering algorithm, K-means),再进行线性增强,将各个区域灰度值线性增加,接着采用阈值分割算法将图像颜色簇进行灰度转换,最后根据所提出缺陷程度表对图像进行定量分析,数据与图形结合表示出光伏阵列的缺陷情况。实验结果表明该方法在缺陷程度检测方面与传统二值化处理算法相比,检测偏差小于2%,并且能详细地显示轻微缺陷与重度缺陷区域缺陷的细节。同时针对图像的非均匀性噪声干扰有较好的抑制效果,提高检测精度。

    Abstract:

    The defect detection and impact assessment of photovoltaic arrays are of great significance for improving the performance and reliability of their systems. Due to the problems of missing details and susceptibility to noise interference in the detection images of photovoltaic array hot spot defects, in order to be able to quickly identify defects and accurately analyze their damage, a set of systematic inspection schemes are proposed. Use a handheld thermal imager to take pictures of the photovoltaic array and transfer the acquired images to the computer, and convert the original Red-Green-Blue color mode (RGB) image into grayscale through grayscale processing image. Due to the shortcomings of traditional thermal imaging detection technology such as low efficiency and lack of defect measurement standards, this paper proposes an improved gray conversion algorithm. First, perform K-means clustering of grayscale images, and perform linear enhancement, it can linearly increase the gray value of each area. Then use threshold segmentation algorithm to perform regional correction of image color clusters. Finally, analyze the image quantitatively according to the defect degree table. Data and image combined to show the defects of the photovoltaic array. The experimental results show that compared with the traditional binarization processing algorithm, the deviation of the algorithm proposed in this paper is less than 2% in defect detection, and show the areas of slight defects and severe defects in detail. It also can suppress image non-uniform noise and improve the accuracy of detection.

    参考文献
    相似文献
    引证文献
引用本文

柳 扬,陈美珍,徐胜彬,郭俊锋,张永强,林金阳.基于热成像与灰度转换技术的光伏阵列缺陷检测方法[J].电子测量技术,2021,44(11):96-102

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-18
  • 出版日期:
文章二维码