基于深度学习的TEM纳米材料图像识别与粒径统计
DOI:
CSTR:
作者:
作者单位:

大连交通大学 电气信息工程学院,大连 116021

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:


Detection and particle size statistics of the TEM nanomaterial images based on deep learning
Author:
Affiliation:

School of Electrical and Information Engineering, Dalian Jiaotong University, Dalian 116021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于催化材料,纳米颗粒的大小和形状等结构信息对催化性能有着重要的影响,基于透射电子显微镜图像的纳米颗粒识别与统计是获取这些信息的主要手段。本文提一种基于深度学习的深度可分离卷积U-Net网络架构,以核壳结构纳米材料为数据集,采用交叉熵损失函数、加权交叉熵损失函数、IoU(Intersection Over Union)损失函数和Dice损失函数作为优化目标,分别对网络进行训练。分割结果表明IoU损失函数和Dice损失函数在正负样本不均衡的核壳结构纳米颗粒数据集中性能较好。最后利用训练好的网络,对TEM图像分割且进行统计,获取粒径及周长分布等结构信息,为深度学习在催化材料领域的应用提供可行性。

    Abstract:

    For catalytic materials, the size and shape of nanoparticles and other structural information have an important impact on the catalytic performance. The identification and statistics of nanoparticles based on transmission electron microscope images are the main means to obtain these information. In this paper, a deep separable convolutional U-Net architecture based on deep learning is proposed. Taking the core-shell nanomaterial as dataset, cross-entropy loss function, weighted cross-entropy loss function, IoU loss function and Dice loss function are adopted as optimization objectives to train the network respectively. The segmentation results show that the performance of IoU(Intersection over Union)loss function and Dice loss function is better for the dataset of core-shell structure nanoparticles with unbalanced positive and negative samples. Finally, the trained network is used to segment and conduct statistics on TEM images to obtain structural information such as particle size and perimeter distribution, which provides feasibility for the application of deep learning in the field of catalytic materials.

    参考文献
    相似文献
    引证文献
引用本文

刘淑慧,姚丽英,张仲圆,曾洁.基于深度学习的TEM纳米材料图像识别与粒径统计[J].电子测量技术,2021,44(10):109-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码