一种基于多因素融合的驾驶预警方法
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,云南 昆明 650500; 2.云南省计算机技术应用重点实验室,云南 昆明 650500

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61262043)、 云南省科技计划项目(2011FZ029)


A driving early warning method based on multi-factor fusion
Author:
Affiliation:

1.College of Information Engineering and Automation, Kunming University of Science and Technol-ogy,Kunming 650500; 2.Yunnan Key Lab for Computer Technology Applications, Kunming 650500

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文提出了一种新的基于多因素融合的驾驶预警方法。首先,结合现有的疲劳评判因素,提出了一种基于多因素的危险评判标准,克服了传统单因素方法的应用的局限及易受外界干扰的缺点。其次,提出了一个基于SSD的检测网络,其中,用先进的MobileNetV3替换了主干网络VGG,用修改的NMS层实现了快速目标检测,最后用新设计的多任务检测器及损失函数实现了多任务检测。在预训练权重的迁移学习后,实测的检测准确率为95.7%,速度为41fps,实现了准确及实时性。

    Abstract:

    Based on multi-factor fusion, this paper proposes a new driving early warning method. First, combining the existing fatigue factors, a risk assessment criterion is proposed based on multiple factors, which overcomes traditional single-factor methods’ limitations in application and shortcomings of being vulnerable to external interference. Secondly, a detection network is proposed based on SSD, in which the backbone network VGG is replaced with the advanced MobileNetV3, fast target detection is achieved with a modified NMS layer, and finally multi-task detection is realized with newly designed multi-task detectors and loss functions. After transfer-learning with the pre-training weights, the tested detection accuracy rate is 95.7%, and the speed is 41fps, which is accurate and real-time.

    参考文献
    相似文献
    引证文献
引用本文

禹江林,张云.一种基于多因素融合的驾驶预警方法[J].电子测量技术,2021,44(11):103-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-18
  • 出版日期:
文章二维码