基于改进YOLOv3的头盔佩戴检测算法
DOI:
CSTR:
作者:
作者单位:

南京师范大学 计算机与电子信息学院(人工智能学院),南京 210023

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

江苏省科技厅面上项目(BK20201370)资助


Helmet wearing detection algorithm based on improved YOLOv3
Author:
Affiliation:

School of Computer and Electronic Information /School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在城市交通中,时常出现电动车骑行者引发的安全事故。佩戴安全头盔可以有效的避免或降低安全事故的带来的损害,因此目前多个城市已经颁布了佩戴安全头盔的相关法规。针对现有的安全头盔佩戴检测准确率低的问题,本文提出了一种基于改进YOLOv3的安全头盔佩戴检测算法。文中的改进算法采取了通道和空间注意力模块的加权特征融合,并结合密集连接网络以提高特征提取的效果,并且引入了空间金字塔池化结构以增强特征。文中以收集的电动车头盔佩戴检测数据集测试和比较了改进后的性能,结果表明:本文提出的改进算法平均检测精度达到93.29%,远高于原YOLOv3算法。实验表明,改进后的网络模型能显著提升电动自行车头盔佩戴情况的检测精度。

    Abstract:

    In urban traffic, safety accidents caused by electric bike riders often occur. Wearing a safety helmet can effectively avoid or reduce the damage caused by a safety accident. Therefore, many cities have promulgated relevant regulations on wearing a safety helmet. Aiming at the existing problem of low detection accuracy of helmet wearing, this paper proposes an algorithm for detecting the safety helmet wearing based on improved YOLOv3. The improved algorithm in this paper adopts the weighted feature fusion of channel and spatial attention modules, and combines densely connected networks to improve the effect of feature extraction, and adds a spatial pyramid pooling structure to enhance features. In this paper, the improved algorithm is tested and compared with original YOLOv3 at the self-built electric bike helmet wearing detection data set. The obtained results show that the mean average precision of the improved algorithm proposed in this paper reaches 93.29%, which is much higher than the original YOLOv3 algorithm. Experiments confirm that the proposed model can effectively enhance detection accuracy of electric bike helmet wearing detection.

    参考文献
    相似文献
    引证文献
引用本文

薛瑞晨,郝媛媛,张振,黄训华,陆华丽,赵华.基于改进YOLOv3的头盔佩戴检测算法[J].电子测量技术,2021,44(12):115-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-06
  • 出版日期:
文章二维码