基于混合特征MGCC的干式变压器故障诊断
DOI:
CSTR:
作者:
作者单位:

山东理工大学 电气与电子工程学院, 山东 淄博 255049

作者简介:

通讯作者:

中图分类号:

TM412

基金项目:


Fault diagnosis of dry-type transformer based on combination of MGCC feature parameters
Author:
Affiliation:

School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变压器故障诊断方法中单一参数表征不够全面的问题,文中提出了一种基于混合特征MGCC的干式变压器故障诊断模型。首先,将预处理后的干式变压器噪声信号分别通过Mel滤波器和Gammatone滤波器得到抗噪性能一般的MFCC和鲁棒性更强的GFCC特征参数;然后,将两者参数进行线性叠加并利用Fisher比舍弃贡献率低的分量,得到混合参数MGCC;最后送入LSTM分类模型进行模式识别。计算结果表明,所提出的混合特征MGCC故障诊断率高达96.11%,相比于单一的声信号倒谱特征参数具有更好的准确性和抗噪性。

    Abstract:

    Aiming at the problem that the single parameter representation in the transformer fault diagnosis method is not comprehensive enough, a dry-type transformer fault diagnosis model based on the mixed characteristics of MGCC is proposed. First, the preprocessed dry-type transformer noise signal passes through the Mel filter and the Gammatone filter to obtain the MFCC with general anti-noise performance and the more robust GFCC characteristic parameters; then, the two parameters are linearly superimposed and the Fisher is used to compare with discarding the components with lower contribution rate, the mixed parameter MGCC is obtained; finally, it is sent to the LSTM classification model for pattern recognition. Calculation results show that the fault diagnosis rate of the proposed mixed feature MGCC is as high as 96.11%, which has better accuracy and noise immunity than a single cepstrum feature parameter of the acoustic signal.

    参考文献
    相似文献
    引证文献
引用本文

狄晓栋,李震梅,李宗哲,王卓,王赛,吴昊.基于混合特征MGCC的干式变压器故障诊断[J].电子测量技术,2021,44(12):57-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-06
  • 出版日期:
文章二维码