基于机器视觉技术的出租车计价器数字识别系统设计
DOI:
CSTR:
作者:
作者单位:

广州计量检测技术研究院 广州 510663

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:


Design of Digital Recognition System of Taxi Meter Based on Machine Vision Technology
Author:
Affiliation:

Guangzhou Institute of Metrology and Testing Technology,Guangzhou 510663,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文设计了一套出租车计价器数字识别系统,用于代替人工来进行计价器的无人检定工作。通过SIFT模板匹配算法,准确定位出视频画面中计价器的位置并将目标图像矫正成正视图。最后根据模板图像的标签定位出跳变数字的位置。针对计价器显示的数字类型,开发一个基于七段码原理的数字识别算法。通过现场试验表明:在数字定位准确的情况下,单帧图像的识别率达到100%。在连续视频中,当数字跳变过程中,图像被抓取到,会造成识别错误。经过优化,将这种错误判断成发生数字跳变,检测到计价器里程发生跳变后,立刻给检定台发送信号并记录。实验表明视频处理的FPS达到25帧,远超过人眼分辨的极限,可以代替人工进行计价器数字跳变的检定。

    Abstract:

    This paper designs a set of digital identification system for the taxi meter, which is used to replace the manual work of unmanned verification of the meter. Through the SIFT template matching algorithm, the position of the meter in the video screen is accurately located and the target image is corrected into a front view. Finally, locate the position of the jump number according to the label of the template image. Aiming at the number type displayed by the meter, a number recognition algorithm based on the seven-segment code principle is developed. Field tests show that the recognition rate of a single frame image reaches 100% when the digital positioning is accurate. In continuous video, when the digital transition process, the image is captured, which will cause recognition errors. After optimization, this error is judged as a digital jump. After detecting the jump of the meter's mileage, it immediately sends a signal to the verification station and records it. Experiments show that the video processing speed reaches 25 fps, which far exceeds the limit of human eye resolution, and can replace the manual verification of the digital jump of the meter.

    参考文献
    相似文献
    引证文献
引用本文

张志宏,马婷婷,张力玲,蔡永洪,黄锋.基于机器视觉技术的出租车计价器数字识别系统设计[J].电子测量技术,2021,44(13):79-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码