融合迁移卷积神经网络的跨域滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学 机电工程学院 昆明 650500;2.云南省先进装备智能维护工程研究中心 昆明 650500

作者简介:

通讯作者:

中图分类号:

TN98; TN06; TH165. 3

基金项目:

国家自然科学基金(No.52065030;No.51875272)资助项目 云南省重大科技专项计划(No.202002AD080001)资助项目


Cross-domain Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network combined with Transfer learning
Author:
Affiliation:

1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China; 2.Engineering Research Center for Intelligent Maintenance of Advanced Equipment of Yunnan Province, Kunming 650600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统的机器学习算法在不同工况下跨平台的滚动轴承故障诊断中容错率和诊断精度低的问题,本文提出了基于连续小波变换(CWT)算法与迁移学习(TL)算法相融合的滚动轴承故障诊断方法。该方法通过提取不同工况下跨平台的滚动轴承故障时域信号分别作为源域样本和目标域样本,并通过CWT算法将振动信号转化为二维信号。其次将故障信号通过核函数将源域样本和目标域样本映射到再生希尔伯特空间,以多核最大均值差异(MK-MMD)距离为度量标准,优化迁移过程的卷积神经网络(CNN)的损失函数,减小迁移后源域样本和目标域样本的分布差异。最后将适配的源域和目标域样本通过CNN模型进行模式识别,实现不同工况下跨平台的滚动轴承故障迁移诊断。经过实验验证,本文所提方法相较于其他方法,显著提高了不同工况下跨平台的滚动轴承故障诊断精度和鲁棒性。

    Abstract:

    In order to solve the problems of low error-tolerance rate and low diagnosis precision of traditional machine learning algorithm in rolling bearing fault diagnosis of Cross-platform under different working conditions, which a rolling bearing fault diagnosis method based on the fusion of Continuous Wavelet Transform (CWT) and Transfer Learning (TL) was proposed in this paper. In this method, the time-domain signals of rolling bearing fault signals under Cross-platform and different working conditions were extracted as source domain samples and target domain samples respectively, and the vibration signals were transformed into two-dimensional signals by CWT algorithm. Then, the fault signals were mapped to the Reproducing kernel Hilbert Space through Kernel function, and the loss function of the Convolutional Neural Network (CNN) was optimized to reduce the distribution difference between the source domain and target domain samples after transfer learning using the Multi-Kernel Maximum Mean Discrepancy (MK-MMD) distance as the metric. Finally, CNN model was used for the pattern recognition of the matched source domain and target domain samples to realize fault transfer diagnosis of Cross-platform rolling bearings under different working conditions. Experimental results show that compared with other methods, the proposed method improves the accuracy and robustness of fault diagnosis of rolling bearings significantly under Cross-platform and different working conditions.

    参考文献
    相似文献
    引证文献
引用本文

王廷轩,刘 韬,王振亚,刘应东.融合迁移卷积神经网络的跨域滚动轴承故障诊断[J].电子测量技术,2021,44(10):167-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码