基于WSN室内定位的路径损耗模型参数算法研究
DOI:
CSTR:
作者:
作者单位:

中北大学信息与通信工程学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TN919

基金项目:

山西省重点研发计划项目(201603D121006-1)、中北大学重点实验室开放研究基金(DXMBJJ2018-08)资助


Research on path loss model parameter algorithm based on WSN indoor location
Author:
Affiliation:

School of Information and Communication Engineering, North University of China, Taiyuan 030051

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着无线通信技术的迅速发展,基于无线传感器网络的室内定位技术被广泛应用于日常生活中,但是室内环境易受到障碍物的干扰,使得信号传输时发生反射、散射等,导致能量损耗,降低测距精度。为提高接收信号强度指示(RSSI)的准确度,通过实验分析距离与RSSI之间的关系,选取最佳通信距离为4m,将其应用到传播模型当中,提出一种动态的路径损耗参数测距方法,找出待测节点所在的最小邻近区域,利用区域质心测算得到路径损耗参数n,采用三边测量定位算法获得待测节点的位置坐标。实验表明,与固定路径损耗参数定位方法相比,动态路径损耗参数定位方法的定位精度提高了56%,大大减小了测距误差。

    Abstract:

    With the rapid development of wireless communication technology, indoor positioning technology based on wireless sensor networks is widely used in daily life. However, indoor environment is easily disturbed by obstacles, which causes reflection and scattering during signal transmission, resulting in energy loss and lower ranging accuracy. In order to improve the accuracy of received signal strength indication (RSSI), this paper analyzes the relationship between distance and RSSI through experiments, selects the best communication distance as 4m, applies it to the propagation model, and proposes a dynamic path loss parameter ranging method, finds out the best neighborhood where the node to be measured is located, calculates the path loss parameter n by using the regional centroid, and obtains the position coordinates of the node to be measured by using trilateration positioning algorithm. Experiments show that compared with the fixed path loss parameter location method, the positioning accuracy of the dynamic path loss parameter location method is improved by 56%, and the ranging error is greatly reduced.

    参考文献
    相似文献
    引证文献
引用本文

杨艳芳,王 伟,王召巴.基于WSN室内定位的路径损耗模型参数算法研究[J].电子测量技术,2021,44(13):54-58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码