样本重采样小目标检测算法的改进
DOI:
CSTR:
作者:
作者单位:

中北大学 电子测试技术国家重点实验室 山西 太原 030051

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家重点研发计划(项目编号:2018YFF01010500)资助


Improvement of small target detection algorithm based on sample resampling
Author:
Affiliation:

State Key Laboratory of Electronic Measurement Technology, North University of China, Taiyuan, Shanxi 030051

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在小目标检测领域中,很多算法以增加模型的复杂度为代价提高了精度,但是带来了较大的计算负担和设备要求。针对模型中复杂度和检测精度之间的矛盾,提出了一种改进的图像金字塔上样本重采样策略算法。该算法只需计算少量的样本数据,并且引入少量参数的轻量化注意力机制模块。实验在 COCO数据集上进行了训练和测试,重采样策略mAP值为40.6%,引入注意力模块改进后为42.1%,且引入注意力模块后权重文件大小只增加了2%。实验结果表明,对样本重采样算法的改进能够在提升检测精度的同时,增加的计算负担较小,验证了轻量化注意力模块的有效性。

    Abstract:

    In the field of small target detection, many algorithms improve the accuracy at the cost of increasing the complexity of the model, but it brings a large computational burden and equipment requirements. Aiming at the contradiction between complexity and detection accuracy in the model, an improved resampling strategy algorithm on image pyramid is proposed. The algorithm only needs to calculate a small amount of sample data and introduce a lightweight attention mechanism module with a few parameters. In the experiment, training and testing were carried out on the COCO dataset. The resampling strategy mAP value was 40.6%, and the improved value was 42.1% with the introduction of the attention module, and the weight file size only increased by 2% with the introduction of the attention module. The experimental results show that the improvement of the sample resampling algorithm can improve the detection accuracy while reducing the computational burden, which verifies the effectiveness of the lightweight attention module.

    参考文献
    相似文献
    引证文献
引用本文

李睿康,焦新泉,陈建军.样本重采样小目标检测算法的改进[J].电子测量技术,2021,44(13):41-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码