基于旋转框和注意力机制的遥感图像目标检测算法
DOI:
CSTR:
作者:
作者单位:

上海理工大学 光电信息与计算机工程学院 上海 200093

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Remote sensing image target detection algorithm based on rotating frame and attention mechanism
Author:
Affiliation:

University of Shanghai for Science and Technology, School of Optoelectronic Information and Computer Engineering, ShangHai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在遥感图像目标检测中,遥感图像在俯视视角下通常呈现任意方向排布。该情况使得常见检测算法在自然场景下有很好的检测效果但往往在遥感图像下检测效果不理想。针对遥感场景下的检测不理想的问题,本文在单阶段检测网络YOLOv5的基础上提出了一种基于旋转目标框和注意力机制的遥感图像目标检测算法(CSL-YOLOv5)。首先,在原网络的特征提取网络(CSPDarknet53)的基础上进行了改造,使输出特征图数量增多,优化网络对小目标的检测效果。然后,在残差块中加入了一种融合通道模块和空间模块的注意力机制,增强图像特征的表达效果,同时利用Focal loss来优化训练效果,在保证检测速度的基础上提升检测精度。最后,使用基于环形平滑标签的长边表示法来实现目标框的旋转,通过把回归问题转为分类问题来解决角度周期性对训练的影响。实验结果表明,本文提出的CSL-YOLOv5算法在DOTA数据集取得了76.24mAP的检测精度,对比先前的单阶段算法有着更高的精度,对比YOLOv5的 mAP相比较提高了8.06%。本文算法在遥感场景下,检测的准确率高且鲁棒性好。

    Abstract:

    In remote sensing image target detection, the remote sensing image is usually arranged in any direction under the top view angle. This situation makes common detection algorithms have good detection results in natural scenes, but the detection results are often unsatisfactory in remote sensing images. Aiming at the problem of unsatisfactory detection in remote sensing scenes, this paper proposes a remote sensing image target detection algorithm (CSL-YOLOv5) based on the rotating target frame and attention mechanism based on the single-stage detection network YOLOv5. First of all, the original network feature extraction network (CSPDarknet53) was modified to increase the number of output feature maps and optimize the detection effect of the network on small targets. Then, an attention mechanism that combines the channel module and the spatial module is added to the residual block to enhance the expression effect of image features. At the same time, Focal loss is used to optimize the training effect, and the detection accuracy is improved on the basis of ensuring the detection speed. Finally, the long-side representation based on circular smooth labels is used to achieve the rotation of the target frame, and the effect of angle periodicity on training is solved by turning the regression problem into a classification problem. The experimental results show that the CSL-YOLOv5 algorithm proposed in this paper achieves a detection accuracy of 76.24mAP in the DOTA data set, which has a higher accuracy compared with the previous single-stage algorithm, and has an increase of 8.06% compared to the mAP of YOLOv5. The algorithm in this paper has high detection accuracy and good robustness in remote sensing scenarios.

    参考文献
    相似文献
    引证文献
引用本文

唐建宇,唐春晖.基于旋转框和注意力机制的遥感图像目标检测算法[J].电子测量技术,2021,44(13):114-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码