基于极性检测和改进CNN框架的车牌识别方法
DOI:
CSTR:
作者:
作者单位:

西安航空学院 车辆工程学院 西安 陕西 710077

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

陕西省教育厅专项科研计划项目(20JK0695)


Research of license plate recognition method based on polarity detection and improved CNN framework
Author:
Affiliation:

School of Vehicle Engineering, Xi’an Aeronautical University, Xi’an, Shanxi, 710077

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高车牌自动识别的性能和适用性,提出一种基于前景极性检测和改进卷积神经网络(CNN)的车牌识别方法。所提方法包含两个主要模块:字符分割模块和字符识别模块。在字符分割模块中,基于RGB颜色的前景极性检测进行二值化处理和感兴趣区域(ROI)的分割,然后进行字符高度估计和倾斜校正等处理。在字符识别模块中,然后,通过包含聚合模块的多通道深度CNN框架提取深度特征,提高输出特征的表征能力。实验结果表明,所提方法具有较好的识别精度,在较难的SSIG测试集和AOLP数据集上分别获得92.2%和94.1%的识别率,且在一些极端情况下优于商业的车辆门禁系统。

    Abstract:

    To improve the performance and applicability of license plate recognition, a license plate recognition method based on foreground polarity detection and improved convolutional neural network (CNN) is proposed. The proposed method consists of two main modules: character segmentation module and character recognition module. In the character segmentation module, foreground polarity detection based on RGB color is used for binarization and ROI segmentation, and then character height estimation and skew correction are performed. In the character recognition module, the depth features are extracted by the multi-channel deep CNN framework including the aggregation module to improve the representation ability of the output features. The experimental results show that the proposed method has good recognition accuracy, and the recognition rate is 92.2% and 94.1% respectively on the more difficult SSIG test set and aolp data set, and it is superior to the commercial vehicle access control system in some extreme cases.

    参考文献
    相似文献
    引证文献
引用本文

李娅,王兴路,雷蕾,上官望义.基于极性检测和改进CNN框架的车牌识别方法[J].电子测量技术,2021,44(14):26-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码