基于注意力机制和残差网络的动作识别模型
DOI:
CSTR:
作者:
作者单位:

西南石油大学计算机科学学院 成都 610599

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目“空间网络视频传输协议优化研究”(61902328)资助


Action recognition model based on attention mechanism and residual network
Author:
Affiliation:

School of computer science, Southwest Petroleum University, Chengdu 610599, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习在图像领域取得的突破,使得特征学习方面取得了迅猛的发展。针对视频序列中连续帧具有的时间相关性,提出了一种基于注意力机制的残差3D卷积网络模型用于人体动作识别。首先利用残差3D卷积网络学习视频序列中连续视频帧之间的时间相关性,即时空特征;之后利用扩展到三维的通道注意力网络对残差3D卷积结构学习到的每个特征通道赋予不同的权值;最后将重新标定权重的特征输入分类器得到最终的分类。本文在UCF-101和HMDB-51数据集上进行实验,分别取得了95.8%和69.7%的准确率。实验结果表明,本文提出的模型在视频人体动作识别问题上具有较高的识别准确率。

    Abstract:

    The breakthrough of deep learning in the field of image makes the rapid development of feature learning. Aiming at the temporal correlation of consecutive frames in video sequences, a residual 3D convolutional network model based on attention mechanism is proposed for human action recognition. Firstly, residual 3D convolution network is used to learn the temporal correlation between consecutive video frames in video sequence. Then, each feature channel learned by residual 3D convolution structure is given different weights by using channel attention network which is extended to three-dimensional. Finally, the reweighted features are input into the classifier to get the final classification. Experiments are carried out on UCF-101 and HMDB-51 datasets, and the accuracy is 95.8% and 69.7%, respectively. The experimental results show that the proposed model has high recognition accuracy in video human action recognition.

    参考文献
    相似文献
    引证文献
引用本文

龚捷,罗聪,罗琴.基于注意力机制和残差网络的动作识别模型[J].电子测量技术,2021,44(14):111-116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码