短期风电功率预测中的IOFA-SVM算法实现
DOI:
CSTR:
作者:
作者单位:

1.河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室 天津 300130; 2.华北理工大学轻工学院 唐山 063000

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

天津市自然科学基金重点项目(19JCZDJC32100)


Improved Optimal Foraging Algorithm for Support Vector Machine of Short-term Wind Power Prediction
Author:
Affiliation:

1.State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; 2.Qinggong College, North China University of Science and Technology, Tangshan 063000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在风电等清洁能源的开发和应用中,为提高风电输出功率预测精度,设计出改进最优觅食算法-优化支持向量机(IOFA-SVM)预测模型,在传统最优觅食算法中加入柯西变异和差分进化策略来提高算法的全局寻优能力以获取SVM的最优参数。用改进后的IOFA-SVM模型进行预测,并将预测结果与BP、GWO-SVM、OFA-SVM模型进行对比,在相同的条件和参数下,该模型三种评价指标MAE、NMAE和NRMSE至少下降0.59%、0.53%和0.50%,表明IOFA-SVM模型确实提高了风电功率预测精度和准确性,对电能调度和电网稳定运行具有重要意义。

    Abstract:

    In development and application of wind energy, for improving the prediction accuracy of wind power output, a prediction model based on improved optimal foraging algorithm for support vector machine(IOFA-SVM) is proposed. Cauchy variation and differential mutation strategy are added into the traditional optimal foraging algorithm to improve the global optimization ability to obtain the optimal parameters of SVM. Using the improved IOFA-SVM model to predict wind power output and comparing the results with BP, GWO-SVM and OFA-SVM models, the three evaluation indexes MAE, NMAE and NRMSE of the model decreased by 0.59%, 0.53% and 0.50% respectively, which shows that the IOFA-SVM model does improve the precision and accuracy of wind power output prediction, and is important to dispatch electric energy and maintain power grid stability.

    参考文献
    相似文献
    引证文献
引用本文

谢波,高建宇,张惠娟,刘金委.短期风电功率预测中的IOFA-SVM算法实现[J].电子测量技术,2021,44(12):63-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-06
  • 出版日期:
文章二维码