基于残差混合域注意力网络的PET超分辨率重建方法
DOI:
CSTR:
作者:
作者单位:

1.河北大学质量技术监督学院 保定 071002;2.河北大学光学工程博士后科研流动站 保定 071002; 3.计量仪器与系统国家地方联合工程研究中心 保定 071002

作者简介:

通讯作者:

中图分类号:

TP391 TH7

基金项目:

教育部“春晖计划”合作科研项目、河北省自然科学基金面上项目(H2019201378)、河北省高层次人才项目(B20190030010)、河北大学校长科研基金项目(XZJJ201917)、河北大学研究生创新项目(HBU2021ss079&HBU2021ss078)资助


PET super-resolution reconstruction method based on residual mixed domain attention network
Author:
Affiliation:

1.College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; 2. Postdoctoral Research Station of Optical Engineering, School of Physics, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Baoding 071002,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    正电子发射断层扫描(Positron Emission Tomography,PET)设备的成像结果常受到扫描时间、示踪剂剂量等因素的制约,导致图像质量下降,影响医生的诊断结果。目前借助人工智能(Artificial Intelligence,AI)技术提升PET成像质量是研究的热点,本文针对现有方法训练参数多,浅层信息丢失,纹理细节损失等问题,提出了一种基于残差混合域注意力网络的PET超分辨率重建方法。该方法设计了一个轻量级的卷积网络,在其中加入残差学习结构并融入混合域注意力块,在增强神经网络的交互性的同时,提高了对高频信息区域的关注度,能够快速重建图像的高频细节。数据集包括网络中的开源数据和从医院获取的临床数据,由此建立PET图像超分辨率数据集,进行训练和测试。实验结果表明,本文算法与对比网络在测试结果上有明显提升,当比例因子为4时,与CARN(Cascading residual network)相比,PSNR和SSIM的平均值分别提高了0.09dB和0.0009,此外参数数量减少了50.26%,有效提升了模型的重建效率。

    Abstract:

    The imaging results of positron emission tomography (Positron Emission Tomography, PET) equipment are often constrained by some factors such as tracer dose and scanning time, resulting in the image quality decline and affecting doctors’ diagnostic results. At present, improving the quality of PET imaging with artificial intelligence (AI) technology is a hot research topic. This paper aims at the problems of existing methods such as many training parameters, loss of shallow information, loss of texture details, etc., and proposes a method based on residual hybrid domain attention. The PET super-resolution reconstruction method of force network. This method designs a lightweight convolutional network, in which the residual learning structure is added and the mixed domain attention block is incorporated. While enhancing the interaction of the neural network, it also increases the attention to the high-frequency information area then quickly reconstruct the high-frequency details of the image. The data set includes open source data in the network and clinical data obtained from hospitals. As a result, a super-resolution data set of PET images is established for training and testing. The experimental results show that the test results of the algorithm in this paper and the comparison network are significantly improved. When the scale factor is 4, compared with CARN (Cascading residual network), the average values ​​of PSNR and SSIM are increased by 0.09dB and 0.0009, respectively. In addition, the number of parameters is reduced by 50.26%, which effectively improves the reconstruction efficiency of the model.

    参考文献
    相似文献
    引证文献
引用本文

李浩然,刘琨,常世龙,田兆星,钱武侠,薛林雁.基于残差混合域注意力网络的PET超分辨率重建方法[J].电子测量技术,2021,44(14):103-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-05
  • 出版日期:
文章二维码