基于CEEMD和MOMEDA的滚动轴承故障提取
DOI:
CSTR:
作者:
作者单位:

云南民族大学电气信息工程学院,云南昆明 650500

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:

国家自然科学基金项目(61761049,61261022)资助


Fault extraction of rolleing bearing based on CEEMD and MOMEDA
Author:
Affiliation:

School of Electrical Information Engineering, Yunnan Minzu University, Kunming, Yunnan 650500

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当滚动轴承发生故障时,故障特征信号会夹杂在振动信号中,造成故障特征信号提取效果不理想。针对这一问题,提出了一种互补集成经验模态分解与多点最优最小熵(CEEMD-MOMEDA)的滚动轴承故障提取方法。首先通过CEEMD算法对采集到的振动信号进行处理,然后通过峭度准则对非故障冲击成分进行筛除,最后利用MOMEDA算法对重组后的信号进行处理从而抑制噪声的影响,从中提取出故障特征。并与单一的MOMEDA算法进行对比。结果表明,提出的CEEMD-MOMEDA算法故障提取能力、抗干扰能力有较大提升。

    Abstract:

    When the rolling bearing fails, the fault characteristic signal will be mixed in the vibration signal, resulting in unsatisfactory extraction effect of the fault characteristic signal. To solve this problem, a fault extraction method for rolling bearings based on complementary integration of empirical mode decomposition and multi-point optimal minimum entropy (CEEMD-MOMEDA) is proposed. At first, the collected vibration signals are processed by CEEMD algorithm, and then the non-fault impact components are s[基金项目:国家自然科学基金项目(61761049,61261022)]creened out by kurtosis criterion. finally, the recombined signals are processed by MOMEDA algorithm to suppress the influence of noise and extract fault features. And compared with the single MOMEDA algorithm. The results show that the fault extraction ability and anti-interference ability of the proposed CEEMD-MOMEDA algorithm are greatly improved.

    参考文献
    相似文献
    引证文献
引用本文

于元滐,杨光永,晏婷,徐天奇,戈一航.基于CEEMD和MOMEDA的滚动轴承故障提取[J].电子测量技术,2021,44(22):96-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码