基于改进PSO-BP算法的动态称重数据处理
DOI:
CSTR:
作者:
作者单位:

1.中北大学仪器与电子学院 太原 030051;2.山西省自动化检测装备与系统工程技术研究中心 太原 030051

作者简介:

通讯作者:

中图分类号:

TP274

基金项目:

山西省重点研发计划(201903D121118)、山西省回国留学人员科研项目(2020-111)资助


Dynamic weighing data processing based on improved PSO-BP algorithm
Author:
Affiliation:

1.School of Instrument and Electronics, North University of China,Taiyuan 030051,China; 2.Automatic Test Equipment and System Engineering Research Center of Shanxi Province,Taiyuan 030051,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决羊只体重如何快速精确动态测量的问题,提高智慧农场的智能化水平,提出基于BP神经网络的动态处理算法。搭建了羊群动态称重系统,使用LabVIEW上位机采集数据,选择四路压力称重传感器信号作为网络输入,真实羊只体重数据作为网络输出,进行BP神经网络的输入、输出训练和测试,由于BP神经网络存在局部极小值等问题,测试样本平均相对误差较大,为此利用粒子群算法优化BP神经网络的权值和阈值。结果表明,BP神经网络算法测试样本的平均相对误差为7.9%,PSO-BP算法测试样本的平均相对误差为5.3%,说明PSO-BP神经网络更能有效地减少羊群的动态称重误差,具有潜在的应用价值。

    Abstract:

    In order to solve the problem of how to quickly and accurately measure sheep weight dynamically and improve the intelligence of smart farms, a dynamic processing algorithm based on BP neural network is proposed. A sheep dynamic weighing system is built, and the LabVIEW host computer is used to collect data. Four pressure load cell signals are selected as network inputs, and real sheep weight data are used as network outputs, and the input and output of BP neural network are trained and tested, because there are problems such as local minimum in BP neural network, the average relative error of test samples is large. The weights and thresholds of the neural network are optimized using the particle swarm algorithm. The results show that the average relative error of the test samples of BP neural network algorithm is 7.9%, and the average relative error of the test samples of PSO-BP algorithm is 5.3%, which indicates that PSO-BP neural network is more effective in reducing the dynamic weighing error of flock and has potential application value.

    参考文献
    相似文献
    引证文献
引用本文

李达,郭晨霞,杨瑞峰.基于改进PSO-BP算法的动态称重数据处理[J].电子测量技术,2021,44(20):132-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码