改进Mask匀光与K-means聚类结合的桥梁裂缝提取
DOI:
CSTR:
作者:
作者单位:

西安科技大学机械工程学院 陕西 西安710054

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(52175145)资助


Improved bridge crack extraction combining MASK dodging and K-means clustering
Author:
Affiliation:

College of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054,Shanxi ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对采集到的桥梁裂缝图像存在污渍、阴影、光照不均等现象,导致后期裂缝特征提取困难的问题,提出一种结合MASK匀光和K-means聚类算法的裂缝提取方法。该方法首先对MASK匀光算法进行改进,提高算法自适应能力,采用对比度拉伸增强图像反差,然后根据裂缝与背景像素灰度值的差异,利用K-means聚类算法进行图像分割,最后结合形态学方法和连通域检测实现裂缝的桥接和去噪。实验结果表明,相比于其他方法,该方法能够有效降低图像亮度不均干扰对裂缝提取结果的影响,裂缝提取准确率达到95%,保证后期裂缝尺寸测量和桥梁病害程度评估的准确性。

    Abstract:

    A crack extraction method combining improved MASK dodging and K-means clustering algorithms is proposed to address the problem of stains, shadows and uneven illumination in the captured bridge crack images, which makes it difficult to extract crack features at a later stage. The method firstly improves the MASK dodging algorithm, improves the adaptive capability of the algorithm, uses contrast stretching to enhance the image contrast, then uses the K-means clustering algorithm to segment the image according to the difference between the grey value of cracks and background pixels, and finally combines morphological methods and connected domain detection to bridge and denoise the cracks. The experimental results show that, compared with other methods, this method can effectively reduce the influence of image brightness uneven interference on the crack extraction results, and the crack extraction accuracy reaches 95%, ensuring the accuracy of later crack size measurement and bridge damage degree assessment.

    参考文献
    相似文献
    引证文献
引用本文

唐 伟,余 波,赵嘉彬,张家园.改进Mask匀光与K-means聚类结合的桥梁裂缝提取[J].电子测量技术,2021,44(22):128-133

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码